
Modern C++
Programming
29. Build Time

Federico Busato
2026-01-06

Table of Contents

1 Compile Time Introduction
The Importance of Build Time

Causes of Long Build Time

2 Compiler Aspects
Compiler Flags

Optimized Compiler Builts

3 C++ Standard Version

1/114

Table of Contents

4 Precompiled Header (PCH)

5 Linker Aspects
Link Time Optimization (LTO)

Thin Link Time Optimization (ThinLTO)

Main Linkers

Linker Flags

2/114

Table of Contents

6 Unity Build

7 Tools for Reducing Build Time
ninja

Compiler Cache

Distributed Compilation

RAM Disk

Include-What-You-Use (IWYU)

3/114

Table of Contents

8 Function Inlining

9 Template
Template Metaprogramming Cost

extern template

constexpr Variable vs. Template Structure + static Data Member

Tag Dispatching

Fold Expressions

C++20 Concepts

auto

using Type Aliasing
4/114

Table of Contents

10 Other Aspects
C++20 Modules

Overload Resolution

Other Code Aspects

Pointer Implementation (PIMPL)

Include Guard vs. #pragma once

Static vs. Dynamic Linking

Comments and Formatting

External Factors

5/114

Table of Contents

11 Tools to Analyze Build Time
Clang Build-Time Analysis

ninjatracing

Templight

Build Bench

VisualStudio - CompileScore

VisualStudio - C++ Build Insights

12 References

6/114

Compile Time
Introduction

Compile Time

7/114

The Importance of Build Time 1/3

Long build time, also called build latency, is strongly associated with poor
productivity, discourage refactoring, and experimentation. Studies suggest that even
moderate improvements to build latency lead to productivity gain.

“While waiting for builds to complete, developers will often work on
another project, check email, get a coffee, or go get lunch.

The developer’s flow was broken: they not only delayed the progress of
their task, but they’ll likely pay a small penalty associated with the cognitive
overhead of task resumption."

Developer Productivity for Humans, Part 4: Build Latency, Predictability, and
Developer Productivity, Google 2023 8/114

https://doi.ieeecomputersociety.org/10.1109/MS.2023.3275268
https://doi.ieeecomputersociety.org/10.1109/MS.2023.3275268

The Importance of Build Time 2/3

A discontinuous development process also leads to low engineer satisfaction.

Delayed development due to slow builds increases the risk of bugs and could result in
customer dissatisfaction, undermining the company’s reputation.

In addition, long build times drive high infrastructure costs, especially in large
organizations with many developers and frequent CI builds. Such costs could directly
affect operational budgets:

• Energy consumption: Large projects can consume hours of CPU time.
• Storage costs: Large build artifacts and intermediate files generated during

prolonged builds could requires terabytes of data.
• Memory capacity : Compiling complex code requires gigabytes of memory which

can limit the parallelization of the process or even cause compilers to crash if the
requirements are not met. 9/114

The Importance of Build Time 3/3

Although C++ is one of the fastest languages to compile, even small changes in
large code bases can significantly increase the build time.

→ Robot Operating System (ROS) software stack �: 5 commits lead to 59%
increase in overall build time. The Compilation Bloat Issue � resulted in
higher CI/CD cost and a significant slow down in development cadence.

Codebase build times tend to increase non-linearly as the project evolves over
time. While the effect is negligible for new or small projects, later development phases
could be disproportionately affected.

→ Figma Case �: 10% growth in code size lead to 50% increase in the build time.

10/114

https://github.com/ros2
https://discourse.ros.org/t/compilation-bloat-issue/30345
https://www.figma.com/blog/speeding-up-build-times/

Large Real-World Codebases

Chromium Browser A full build can take from one hour up to 6 hours.

Unreal Engine 4 A full build can take up to 4 hours, while modifying a single file
could take 20 minutes.

Microsoft Office 20 minutes or more for a full build.

Windows 10 Up to 16 hours to build.

LLVM From 30 minutes to 2 hours.

NVIDIA CUTLASS From 45 minutes to hours.

Linux Kernel A few minutes (15M lines of code, mostly C), Ubuntu or Fedora
configurations could take up to 2 hours.

Large Code Bases 1M+ lines of code, 200+ contributors, 3 yrs+ projects could
requires >1 hour to compile 11/114

Causes of Long Build Time 1/2

• Header dependencies: Including a single header implicitly includes all of its
dependencies. As the project grows, the number of dependencies will increase at a
faster rate than the number of files. The concept is analogous to densification in
graph theory∗∗∗.

• Template: Similar to code dependencies, template instantiations grow faster
than the number of files. Redundant instantiations are difficult to track, especially
in large projects.

∗∗∗ Graph Evolution: Densification and Shrinking Diameters 12/114

https://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf

Causes of Long Build Time 2/2

• Monolithic Organization. Each translation unit is compiled sequentially. As a
result, "heavy" non-modular translation units, which carry multiple dependencies
and template instantiations, cause a bottleneck in the whole process.

• Linking: Linking and Link-Time-Optimization are often the slowest phases due to
their sequential nature. In addition, unlike object compilation, the linking phase is
not incremental because it is performed in a single step.

13/114

Compiler Aspects

Compile Time, Binary Size, Optimization Level

BenchGen - Automatic Generation of Benchmarks to Stress-Test Computing Systems.
14/114

https://github.com/lac-dcc/BenchGen

Compiler Importance 1/2

Recent versions of compilers not only focus on implementing new language features,
performance, or new warnings, but also on improving compile time.

• A notable example is MSVC, where switching to a recent version (17.14)
improved the build time by ∼30%1.

• In another case, updating the compiler to MSVC to 17.16 leads to 20%
improvement 2.

• Clang 22 improves AST representation, making it 8% faster 3.

1 Impressive build speedup with new MSVC Visual Studio 2022 version 17.14

2 GDC 2025: How Build Insights Reduced Call of Duty: Modern Warfare II’s Build
Times by 50%

3 Making the Clang AST Leaner and Faster 15/114

https://abuehl.github.io/2025/05/15/speedup-new-compiler-version.html
https://developer.microsoft.com/en-us/games/articles/2025/03/gdc-2025-build-insights-call-of-duty-modern-warfare/
https://developer.microsoft.com/en-us/games/articles/2025/03/gdc-2025-build-insights-call-of-duty-modern-warfare/
https://cppalliance.org/mizvekov,/clang/2025/10/20/Making-Clang-AST-Leaner-Faster.html

Compiler Importance 2/2

Compiler differences: Historically, clang showed better compile performance compared
to GCC. However, the difference has narrowed over time as both compilers have
improved. A recent PostgreSQL benchmark showed a significant faster build time with
clang, up to 2x compared to GCC. Also, it is important to note that flags selection
could lead to different results.

New compilers, new timings 16/114

https://peter.eisentraut.org/blog/2024/05/21/new-compilers-new-timings

GCC Evolution - Compile-Time vs. Performance

BenchGen - Automatic Generation of Benchmarks to Stress-Test Computing Systems. 17/114

https://github.com/lac-dcc/BenchGen

Compiler Flags 1/2

-O0 , /O0 No optimizations → slowest code, shortest compile time.

-O<N> , /O<N> Higher optimization level → better run-time performance but
longer compile time.

-g , -g<N> , /DEBUG Debug mode → longer compile time. High debug level worsens
compile time.

-gsplit-dwarf Split debugging information (DWARF) between the standard
object file and a separate DWARF object file. This results in
smaller object files and, consequently, faster linking times.

18/114

Compiler Flags 2/3

-Wunused ,
-Wunreachable-code

Raise a warning for unused variables, functions, parameters,
return values, type definitions, and unreachable code.
Removing unused or unreachable code reduces the code to
compile. Included in -Wall .

-DNDEBUG
/DNDEBUG

Remove assertions → slightly improve compile time by

skipping compilation of assertion code .

19/114

Compiler Flags 3/3

-pipe Use communication pipelines (Linux pipes) rather than temporary files
when communicating between different stages of compilation, such as
preprocessing and compilation → avoid slow accesses to secondary
memory.

-flto , /GL Link Time Optimization (LTO), Whole Program Optimization → The
compile time can be increased by up to 10 times.
The compiler generates intermediate representations (IRs) of object
files, which the linker uses to optimize the program as a single entity.

20/114

Optimized Compiler Builts 1/4

As an alternative to using the operating system compiler or downloading a
pre-compiled, general binary of the compiler, it is possible to build the compiler
executable directly from the source code.

This allows users to build a compiler optimized for their CPU architecture and tailored
to their workload. An optimized compiler can speed up the compilation process from
15% to 50%.

Use kernel.org clang whenever possible
21/114

https://github.com/ClangBuiltLinux/continuous-integration2/pull/719#issuecomment-1971666980

Optimized Compiler Builts 2/3

Build clang optimized binary for the current architecture + Link-Time Optimization
(LTO). Additionally, enable lld linker to speed up the linking process:

git clone https://github.com/llvm/llvm-project.git
cmake -G Ninja -S llvm -B build -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_LTO=Thin \

-DLLVM_ENABLE_LLD=ON CMAKE_CXX_FLAGS="-O3 -march=native"
cmake --build build

Getting Started with the LLVM System 22/114

https://llvm.org/docs/GettingStarted.html

Optimized Compiler Builts 3/4

Add Profiled Guided Optimization (PGO) and Post-link Binary Layout Optimizer
(BOLT). This kind of build is called multi-stage or bootstrap.

cmake -G Ninja -S llvm -B build -C clang/cmake/caches/BOLT-PGO.cmake \
-DPGO_INSTRUMENT_LTO=Thin \
-DBOOTSTRAP_LLVM_ENABLE_LLD=ON \
-DBOOTSTRAP_BOOTSTRAP_LLVM_ENABLE_LLD=ON \
-DBOOTSTRAP_CMAKE_C_FLAGS="-O3 -march=native" \
-DBOOTSTRAP_CMAKE_CXX_FLAGS="-O3 -march=native" \
-DCLANG_PGO_TRAINING_DATA=<lit-style test tree directory> \
-CLANG_PERF_TRAINING_DATA_SOURCE_DIR=<CMake project to build during training>

ninja stage2-clang-bolt
(1) Builds a stage1 compiler + tools to build an instrumented stage2 compiler.
(2) Use the instrumented compiler to generate profdata based on the training files.
(3) Use the stage1 compiler with the stage2 profdata to build a PGO-optimized compiler.

Advanced Build Configurations 23/114

https://llvm.org/docs/AdvancedBuilds.html

Optimized Compiler Builts 4/4

Build gcc optimized binary for the current architecture + Link-Time Optimization
(LTO):

git clone https://github.com/gcc-mirror/gcc.git
./configure --prefix=/opt/gcc-<X.Y> --enable-languages=c,c++ --disable-multilib
make -j20 BOOT_CFLAGS='-flto -O3 -march=native -pipe'

Use profile feedback to optimize the compiler itself:

./configure --prefix=/opt/gcc-<X.Y> --enable-languages=c,c++ --disable-multilib \
--with-build-config=bootstrap-lto

make -j20 BOOT_CFLAGS='-O3 -march=native -pipe' BUILD_CONFIG=bootstrap-lto \
profiledbootstrap

Installing GCC
24/114

https://gcc.gnu.org/install/configure.html

C++ Standard
Version

C++ Standard Version and Compile Time 1/2

Newer versions of the C++ standard tend to increase compile time due to the
introduction of advanced features, including constexpr , lambda expressions,
structure binding, etc. The complexity of the language has a direct impact on the
performance of the compiler front-end, leading to increased parsing time. The compiler
optimizer, operating on the intermediate representation, remains unaffected.

In isolation, C++ standard versions have generally a negligible impact on compile
time. On the other hand, higher C++ versions enable many new functionalities in
standard library headers, which largely dominate the handling of language complexity.

25/114

C++ Standard Version and Compile Time 2/2

Header C++03 C++17 C++23

Micro sec LOC Micro sec LOC Micro sec LOC

<algorithm> 48 10,364 67 17,647 130 (2.7x) 32,273 (3.1x)
<cmath> 49 6,315 97 21,243 130 (2.7x) 28,298 (4.5x)
<vector> 49 7,856 83 20,193 124 (2.5x) 27,972 (3.5x)
<functional> 31 20,658 118 36,914 167 (5.3x) 68,984 (3.3x)
<thread> N/A 10,387 86 25,587 513 (5.9x) 33,601 (3.2x)
<iostream> 96 5,376 176 25,032 458 (4.7x) 78,717 (14.8x)

g++ -std=c++<VER> -E -x c++ /usr/include/c++/<VER>/<HEADER> | wc -l

• What happened with compilation times in c++20?

• C++ Compile Health Watchdog 26/114

https://www.reddit.com/r/cpp/comments/o94gvz/what_happened_with_compilation_times_in_c20/
https://artificial-mind.net/projects/compile-health/

C++ Standard Library - Header Inclusion Graph 1/3

Graph extracted from STL
explorer �, VS 2022,
C++20:

• 96 headers in total with
1,721 include relationships

• Density: 0.18

27/114

https://s9w.github.io/stl_explorer/explorer.html
https://s9w.github.io/stl_explorer/explorer.html

C++ Standard Library - Header Inclusion Graph 2/3

28/114

C++ Standard Library - Header Inclusion Graph 3/3

29/114

Precompiled Header
(PCH)

Precompiled Header (PCH) 1/6

Compiling a source file involves combining the code of all the header files included
directly and, recursively, all their dependencies, until no further inclusions are possible.
The complete set of the source file and its headers is referred to as a translation unit
or compilation unit.

Compilation process inefficiency:

• Modifying any code within a translation unit, even a single space, requires
recompiling the entire unit from scratch.

• Headers are often included in multiple translation units. Even a small change can
cause a large part of the program to be recompiled.

• The prevalent development process involves modifying a single file or a small set
of files, even though most of the code changes infrequently. One example is the
standard library. 30/114

Precompiled Header (PCH) 2/6

Precompiled headers (PCHs) address the problem of lengthy build times in large
projects by partially compiling code related to a header into a binary file. Subsequent
compilations can then load this file instead of re-parsing the headers, which
significantly reduces build times.

In more detail, the compiler saves serialized Abstract Syntax Trees (ASTs) and
supporting data structures in a compressed bitstream to minimize both creation time
and initial load time.

Precompiled headers are particularly effective for large header libraries that make
extensive use of templates, like the Standard Library, Eigen, and Boost.

• MSVC - Precompiled header files

• LLVM - Precompiled Header and Modules Internals

• GCC - Using Precompiled Headers 31/114

https://learn.microsoft.com/en-us/cpp/build/creating-precompiled-header-files?view=msvc-170
https://clang.llvm.org/docs/PCHInternals.html
https://gcc.gnu.org/onlinedocs//gcc/Precompiled-Headers.html

Precompiled Header (PCH) - Notes 3/6

• The first compilation, which creates the precompiled header file, takes slightly
longer than subsequent compilations.

• Precompiled headers are recompiled when:
- Any of the included files are modified.
- Modification of compiler flags that alter the generated code, such as optimization

flags or macro values.

• Template Code: Precompiled headers speed up header parsing containing the
template definition, but the cost of template instantiation remains.

• Precompiled headers do not affect the final code generation in any way. For
instance, they don’t alter inlining behavior.

• Modules are a generalization of precompiled headers that relax several restrictions
placed on precompiled headers. 32/114

Precompiled Header (PCH) - Compiler Flags - GCC 4/6

GCC precompiled header process:

• The user needs to directly compile header files to .gch files.

• During normal compilation, GCC searches the include directories for the
precompiled header.

Additional notes:

• The -Winvalid-pch flag warns if a precompiled header is found in the search
path but cannot be used.

• GCC precompiles template definitions, but not their instantiations.

33/114

Precompiled Header (PCH) - Compiler Flags - Clang 5/6

Clang precompiled header process:

• Similarly to GCC, Clang allows you to compile header files directly into .pch
files. Alternatively, the compiler provides the -emit-pch flag to explicitly
generate them.

• During normal compilation, Clang requires the flag
-include-pch <file name>.pch to load the precompiled headers.

Additional notes:

• Clang precompiles template definitions, but not their instantiations by default.

• Starting with Clang 11, the -fpch-instantiate-templates flag also enables
precompilation of template instantiations in header files. The option can improve
compile time by up to 30-40% on template heavy libraries. 34/114

Precompiled Header (PCH) - Compiler Flags - Microsoft Visual Studio 6/6

Microsoft Visual Studio precompiled header process:

• Microsoft Visual Studio requires the option /Y to create the precompiler
header .Pch .

• During normal compilation, Microsoft Visual Studio requires the flag
/Yu <file name>.Pch to use the precompiled headers.

Additional notes:

• If the compiler detects an inconsistency, it issues a warning and identifies the
inconsistency where possible.

• Microsoft Visual Studio precompiles template definitions, but not their
instantiations.

35/114

Linker Aspects

Linker 1/3

The linking phase plays a critical role in the C++ compile time because it is strongly
sequential. In contrast, object compilation can run concurrently across several threads.

Main linking steps and relation with compile time:

• Collect object files and libraries. The linker is also responsible for extracting
the necessary objects from static libraries → Negligible impact in general.
However, loading many objects or large ones affects this step.

36/114

Linker 2/3

• Symbol resolution. Link references and exported symbols of all object files,
ensuring that there are no multiple definitions for the same symbol, nor references
without a symbol. Identical symbols allowed in multiple translation units, such as
inline functions and templates, must be unified → This step can take significant
time in large projects involving several thousands of symbols. The problem is
worsened by templates, many small functions, function generation through
macros, and long symbol names.

• Relocation. Compilers generate code as if every object starts at address zero.
The linker assigns final memory addresses to all references and data → This phase
may take a long time in large codebases.

37/114

Linker 3/3

• Link Time Optimization (LTO), Whole Program Optimization.
Interprocedural optimizations across translation units. The linker merges the
intermediate representations (IRs) of compiled files, performs cross-file inlining,
dead code elimination, propagates constants, refines data layouts, and improves
code locality by placing related code close together → The most expensive step.
The linking time will increase by a factor of 10 to 100.

• Final binary generation. Merging all resulting files and debugging information
→ Debugging metadata could require a significant portion of the linking time.
The size of the output plays a minor role.

38/114

ThinLTO - Thin Link Time Optimization

ThinLTO (Thin Link Time Optimization) is an advanced form of LTO that is
scalable, memory-efficient, and incremental, even for very large codebases.

As with regular LTO, the compiler produces a bitcode for each module with ThinLTO.
However, the ThinLTO bitcode is augmented with a compact summary of the module.
During the linking stage, these summaries are combined, and a global analysis is
performed.

ThinLTO is supported on:
• Clang 3.9+ with the flag -flto=thin
• GCC 12+ with the flag -flto=<num_threads>
• LLVM ldd linker 3.9+
• GNU gold linker
• mold linker

ThinLTO - LLVM
39/114

https://clang.llvm.org/docs/ThinLTO.html

ThinLTO - Advantages

Scalable Operates efficiently on large codebases. Parallel execution on
multiple threads. Up to 2-10x faster than full LTO.

Memory-efficient 10x less memory footprint. Full LTO could use up to 100 GB of
memory for large projects.

Incremental Only the changed modules that require recompilation or
re-optimization. This results in up to 100x faster linking time.

• Consider ThinLTO vs LTO vs no LTO with respect to compile time and runtime
performance

• ThinLTO - Towards Always-Enabled LTO - Teresa Johnson, CppCon 2017 40/114

https://github.com/tikv/tikv/issues/4163
https://github.com/tikv/tikv/issues/4163
https://github.com/CppCon/CppCon2017/blob/master/Presentations/ThinLTO%20-%20Building%20C%2B%2B%20Applications%20with%20Scalable%20Whole%20Program%20Optimization/ThinLTO%20-%20Building%20C%2B%2B%20Applications%20with%20Scalable%20Whole%20Program%20Optimization%20-%20Teresa%20Johnson%20-%20CppCon%202017.pdf

Main Linkers 1/3

GNU linker (ld) Default GNU linker.
• Used until GNU binutils 2.19 and GCC 4.4.0 (2008).

GNU Gold linker Replaced the GNU linker since 2008.
• 2-5× faster than the default linker for large C++ builds.

• Enabled with -fuse-ld=gold with GCC/Clang.

• Supports only the Linux ELF format.

• Supports LTO and ThinLTO via plugins.

• Deprecated in 2025, binutils 2.44, GCC 15.

41/114

Main Linkers 2/3

LLVM ldd Linker developed as part of the LLVM framework.
• 2–4x faster than Gold in large-scale projects, especially in multi-thread CPUs.

• Enabled with -fuse-ld=lld with GCC/Clang.

• Supports all the main executable formats, operating systems, and architectures.

• Supports LTO and ThinLTO natively.

• Provides better error diagnostics.

LLD - The LLVM Linker 42/114

https://lld.llvm.org/

Main Linkers 3/3

Mold linker Modern open-source linker.
• 2–5x faster than LLVM lld in large projects, especially with many files and in

multi-thread CPUs.

• Supports only Linux ELF format.

• Enabled with -fuse-ld=mold with GCC/Clang.

• Supports LTO and ThinLTO.

• Requires GCC ≥ 12.1 or Clang.

mold: A Modern Linker 43/114

https://github.com/rui314/mold

Linker Flags - GCC/Clang Compilers

-fuse-ld=gold Enables GNU Gold linker, Linux ELF only.

-fuse-ld=lld Enables LLVM linker, requires LLVM.

-fuse-ld=mold Enables Mold linker, Linux ELF only, requires a supported Linux
distribution or a manual build.

-flto Enables Link Time Optimization, also called Whole Program
Optimization, for GCC/Clang and MSVC, respectively.

-flto=thin
-flto=<N>

Enables ThinLTO (Thin Link Time Optimization) for Clang and
GCC, respectively. N represents the number of threads for the
parallelization.

44/114

Linker Flags - Microsoft Visual Studio

/LTCG:incremental Incremental linking for static libraries.

/cgthreads:<N> Number of threads for optimization and code generation.

/debug:fastlink Generates a partial Program Database (PDB), containing
debugging information. 2-4x faster link times.

• /LTCG (Link-time code generation)

• Speeding up the Incremental Developer Build Scenario

• Improved Linker Fundamentals in Visual Studio 2019 45/114

https://learn.microsoft.com/en-us/cpp/build/reference/ltcg-link-time-code-generation?view=msvc-170
https://devblogs.microsoft.com/cppblog/speeding-up-the-incremental-developer-build-scenario/
https://devblogs.microsoft.com/cppblog/improved-linker-fundamentals-in-visual-studio-2019/

Unity Build

Unity Build 1/6

Unity build is a compilation technique where multiple translation units are textually
merged into one and compiled as a single source file.

Unity build could significantly reduce the compile time for the following reasons:

• Headers are parsed only once, rather than once per translation unit.
• The compiler reuses templates that have already been instantiated and that

previously belonged to different translation units. This avoids redundant work.
• Decreases linker work because there are fewer object files and, as consequence,

fewer symbols to resolve symbols.
• Expensive Link-Time Optimization can be avoided or reduced for

optimized/release builds.

A guide to unity builds 46/114

https://onqtam.github.io/programming/2018-07-07-unity-builds/

Unity Build 2/6

Unity build is successfully used in popular projects such as Unreal Engine, Unity,
WebKit, and Mozilla Firefox.

Real-world applications showed that Unity build can lower the compile time by:

12x Comparing C/C++ unity build with regular build on a large
codebase

10x Faster Compiling: Visual Studio Unity (Jumbo) Builds

5x The Little Things: Speeding up C++ compilation

4x How I Cut Unity Compile Times by 75%

47/114

https://hereket.com/posts/cpp-unity-compile-inkscape/
https://hereket.com/posts/cpp-unity-compile-inkscape/
https://alexanderhoughton.co.uk/blog/faster-compiling-visual-studio-unity-jumbo-builds/
https://news.ycombinator.com/item?id=24540954
https://www.screaminggoose.com/blog/2019/2/4/how-i-cut-unity-compile-times-by-75

Unity Build 3/6

Unity build can be applied manually (not suggested), or with the support of tools like
cmake �, Visual Studio � (native), and FastBuild �.

unity.cpp

include "source1.cpp"
include "source2.cpp"
...

48/114

https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
https://devblogs.microsoft.com/cppblog/support-for-unity-jumbo-files-in-visual-studio-2017-15-8-experimental/
https://www.fastbuild.org/docs/functions/unity.html

Unity Build 4/6

With cmake:

cmake_minimum_required(VERSION 3.16) # minimum version required
project(MyProject)

add_executable(prog
main.cpp
source1.cpp
...

)
set_target_properties(prog PROPERTIES

UNITY_BUILD ON
UNITY_BUILD_BATCH_SIZE 16) # maximum number of source files that can be combined

49/114

Unity Build 5/6

Additional unity build positive effects:

• All merged source files can now be optimized together, avoiding Inter-Procedural
Optimization (LTO).

• One Definition Rule (ODR) violations, such as two inline functions with the
same name, now trigger a compile error.

Unity build compilation time drawbacks:

• Incremental recompilation slow down. Unity build greatly benefits clean, full
builds, while it could increase compilation time compared to modifications to one
or few translation units.

• Unity build can translate into CPU under utilization due to lack of build
parallelism. For example, one of the most common problem is a wrong value of
cmake UNITY_BUILD_BATCH_SIZE option. 50/114

Unity Build 6/6

Unity build negative side effects:

• Valid code could not compile.
- Collision of symbols with internal linkage and identical name, for example

static or within an anonymous namespace variables.
- Macro collisions and propagation.

• Bigger translation units translates into larger amount of memory usage during
compilation. This could cause compilation process termination or system crash.

51/114

Tools for Reducing
Build Time

ninja 1/7

The Ninja � build system is a drop-in replacement for Make and MSBuild (Visual
Studio) focused on speed and scalability.

• While ninja has comparable time to Make for initial builds, it can be up to
100x faster for incremental or no-op builds in large projects.

• Compared to Make , ninja has a less rich and intuitive syntax. On the other
hand, it allows minimizing parsing time and enables fast dependency scanning.

• ninja dependency files are intended to be produced by higher-level generators,
such as CMake, rather than manually as in Make .

• ninja is actively used in projects like Chrome, Android, LLVM, and Swift.

52/114

https://github.com/ninja-build/ninja

ninja 2/7

Key features:

• Fast, especially with incremental or no-op builds.

• Portable. Supported on Linux, Windows, Mac OS X, and FreeBSD.

• Standalone and minimal (∼300 KB).

• Automatic parallelization, no need of -j flag.

• Queries, such as target dependencies or dependency graph, to analyze and
understand build bottlenecks.

53/114

ninja 3/7

Benchmarking the Ninja build system 54/114

https://david.rothlis.net/ninja-benchmark/

ninja 4/7

Enable ninja with CMake:

• Explicitly set the generator in CMake:
cmake -G Ninja ..

ninja
or 'cmake --build .'

• Set the CMAKE_GENERATOR environment variable:
export CMAKE_GENERATOR=Ninja
cmake ..

or CMAKE_GENERATOR=Ninja cmake ..

Ninja - CMake documentation 55/114

https://cmake.org/cmake/help/latest/generator/Ninja.html

ninja - Command Line Options 5/7

ninja -t <tool> , where <tool> is

targets List of targets.

query <target> Inputs and outputs of a given target.

inputs <targets> List of inputs.

deps [<targets>] List of internal and external dependencies.

commands <targets> Print a list of commands to build the target(s).

clean Remove built files.

The Ninja build system 56/114

https://ninja-build.org/manual.html#_extra_tools

ninja - Command Line Options 6/7

Browse the dependency graph in a web browser.

ninja -t browse --port=8000 --no-browser mytarget

lib/libsfml-network-s.a

57/114

ninja - Command Line Options 7/7

Generate the dependency graph in dot format.

ninja -t graph [mytarget] | dot -Tpng -ograph.png

58/114

Compiler Cache

A compiler cache tool is designed to speed up the process of recompilation by storing
the results of previous compilations for reuse when the same compilation occurs again.

Common usages:

• Clean build of a project to avoid stale artifacts, caches, or misdetected
dependencies.

• Build a project across different branches or directories.
• Continuous Integration (CI) shared across multiple developers.
• Validate software build status for each commit.

Quote from my team:
“... just brought down the time for our fully cached MSVC builds from

1h20m to 15m saving us like $30k/mo in AWS costs."
59/114

How a Compiler Cache Tool Works

1 Detect if the compilation inputs has been already processed previously.
This includes the code of a translation unit, compiler information (name, location,
size, etc.), compilation flags, and the build directory for debug builds. The
information to uniquely identify compilation inputs are hashed by using a
cryptographic hash algorithm.

2a If a match is found, the compiler cache reuses the result of the compilation
without invoking the compiler.

2b If there is no match, the compiler cache falls back to a normal compiler call and
hashes the compilation inputs. Lookups of previous results could also fail if the
modification time of an included file changes, or if the source code depends on
time information, namely the __TIME__ macro.

60/114

Compiler Cache - CCache

CCache � is one of the most widely used compiler caching software tools. It is
commonly used as a wrapper for compiler calls, which makes it easy to use and
integrate with build systems such as Make and CMake .

CCache supports several languages, operating systems, compilers, and x86/Arm64
cpu architectures. It relies on BLAKE3 hash algorithm, XXH3 for file checksum, and
ZStd for file compression.

Usage:

ccache g++ file.cpp <other flags> # single translation unit
CXX='ccache clang++' make # makefile
export CMAKE_CXX_COMPILER_LAUNCHER=ccache # cmake environment variable

61/114

https://ccache.dev/

Compiler Cache - SCCache

SCCache � is a widely used compiler caching software tool focused on remote/cloud
backends. SCCache is particularly useful for enabling cache sharing across machines
and CI systems.

While SCCache supports local disk cache, it is significantly slower than CCache .

Usage:

sccache g++ file.cpp <other flags> # single translation unit
CXX='sccache clang++' make # makefile
export CMAKE_CXX_COMPILER_LAUNCHER=sccache # cmake environment variable

See Storage Options � for remote storage configuration.

62/114

https://github.com/wasmerio/sccache
https://github.com/wasmerio/sccache?tab=readme-ov-file#storage-options

Distributed Compilation 1/3

Large C++ codebases can benefit from distributing builds across machines on a
network. Tools for distributing builds are particularly useful for scaling up the
throughput and latency of Continuous Integration (CI) for projects involving several
developers.

• distcc � is a popular tool to distributes compilation jobs. Linking and
non-compile steps remain local.

• icecream � distributes compilation with a central scheduler and ships toolchains
to workers to keep environments aligned.

• sccache-dist � adds distributed compilation to sccache caching and scheduling
remote compilations.

63/114

https://github.com/distcc/distcc
https://github.com/icecc/icecream
https://firefox-source-docs.mozilla.org/build/buildsystem/sccache-dist.html

Distributed Compilation 2/3

• incredibuild � is a commercial distributed build tool that coordinates the
compilation CPUs, LAN, and cloud. The tool combines task distribution with a
compilation cache.

• FASTbuild � is a high performance, open-source build system, supporting highly
scalable parallel compilation, unity build, caching, network distribution.

Seamlessly Accelerate CMake Projects in Visual Studio with Incredibuild
64/114

https://www.incredibuild.com/
https://www.fastbuild.org/docs/home.html
https://devblogs.microsoft.com/cppblog/seamlessly-accelerate-cmake-projects-in-visual-studio-with-incredibuild/

Distributed Compilation 3/3

Distributing builds are especially effective when used in combination with local
compilation cache tools.

• Initially, the tool searches for cached binary results on the local system.

• If a local binary lookup fails, the tool sends the job to the available clients.

• If a remote client returns a hit, the cached binary is sent back to the server.

• Otherwise, the job is assigned to a client that compiles the code and sends the
results back to the server.

• The remote binary then populates the local cache.

65/114

RAM Disk 1/2

A RAM disk, also known as an in-memory file system, can reduce C/C++ compile
times by eliminating the need for slow access to secondary storage, such as a hard disk
or network storage.

Builds that rely heavily on I/O operations involving many small files, or large objects,
or big temporary files, can benefit from a RAM disk, especially when using a
magnetic-mechanical data storage device (HDD). The advantage is less pronounced
with a solid-state drive (SSD).

Note: Large projects, especially when LTO is enabled, can generate several gigabytes
of temporary files. If the size of the RAM disk is insufficient, the operating system uses
the slow swap space on secondary storage. This also applies to processes not involved
in the compilation, slowing down the entire system.

66/114

RAM Disk 2/2

A practical way to use a RAM disk is to create a fixed-size tmpfs and configure the
build system to use it as a build directory 1.

mount -t tmpfs -o size=8G tmpfs <path_to_directory>

The build time for many projects is spent on CPU-intensive compilation, with I/O
representing only a small part of the process. Also, modern operating systems often
cache the intermediate objects.

The typical build time improvement is 20–30% in the best cases 2. Combining a RAM
disk with compiler cache can provide up to 4x improvements 3.

[1] Chromium - Tips for improving build speed on Linux
[2] Using RAMDisk to Speed Build Times
[3] Massive speedup using ccache in disk backed RAMFS 67/114

https://chromium.googlesource.com/chromium/src/+/9c60333a0/docs/linux_faster_builds.md
https://ardalis.com/using-ramdisk-to-speed-build-times/
https://forums.gentoo.org/viewtopic-t-838198-start-0.html

Include-What-You-Use (IWYU) 1/3

Include-What-You-Use (IWYU) � is a Clang-based static analysis tool that checks
which headers should be added or removed. Its goals are to remove unnecessary header
inclusion and suggest headers based on symbols usage.
include <vector>
int main() {

size_t x = 10;
}

OUTPUT
main.cpp should add these lines:
#include <stddef.h> // for size_t

main.cpp should remove these lines:
- #include <vector> // lines 1-1

The full include-list for main.cpp:
#include <stddef.h> // for size_t 68/114

https://github.com/include-what-you-use/include-what-you-use

Include-What-You-Use (IWYU) - Build 2/3

sudo apt install libzstd-dev # requires zstd
git clone https://github.com/include-what-you-use/include-what-you-use.git
cd include-what-you-use
git checkout clang_21
mkdir build && cd build
cmake -G "Unix Makefiles" -DCMAKE_PREFIX_PATH=<path_to_llvm_root_dir> ..
make -j20

The tricky part is that include-what-you-use requires a non-IR version of the LLVM
libraries.
if the linux distribution has a supported llvm package
wget https://apt.llvm.org/llvm.sh
chmod +x llvm.sh
sudo ./llvm.sh 21 # version_number

Otherwise, you will get an error similar to:
lib/libLLVMOption.a: error adding symbols: file format not recognized

69/114

Include-What-You-Use (IWYU) - Build 3/3

The solution involves building LLVM from sources:
git clone https://github.com/llvm/llvm-project.git
cd llvm-project # referred as <llvm-project_dir> in cmake
git checkout llvmorg-21.1.3
cmake -S llvm -B build -G Ninja \

-DLLVM_ENABLE_PROJECTS="clang;lld" \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_TARGETS_TO_BUILD="X86" \
-DLLVM_ENABLE_LTO=OFF

Then, provides the LLVM cmake directory to include-what-you-use:
cmake -G "Unix Makefiles" -DLLVM_DIR=<llvm-project_dir>/build/lib/cmake/llvm/ \

-DClang_DIR=<llvm-project_dir>/build/lib/cmake/clang/ ..

70/114

Function Inlining

Function Inlining

Function inlining causes the compiler to substitute the function body into each call
site, leading to increased code generation and optimization work during compilation.

• Function inlining could consume a significant portion of total build time for large
projects.

• Function inlining is one of the first optimization introduced by the compiler,
namely -O1 . There are several factors that affect function inlining, see
Optimization II lecture.

• Function inlining can be also manually controlled for each function with the
attributes [[gnu::always_inline]] , [[gnu::noinline]] ,
[[msvc::forceinline]] , [[msvc::noinline]]

71/114

Function Inlining - A Real-World Case 1/2

From GDC 2025: How Build Insights Reduced Call of Duty: Modern
Warfare II’s Build Times by 50%: �

“Two source files were the long pole for compilation time. The entire build
pipeline reduced to only two cores for a significant amount of time while it
waited for these files to finish building...This represents 12% of the total build
time...
One function had 13,700 force-inlined calls, due to a combinatoric explosion
in call counts and resulted in 70 seconds of compile time.”

72/114

https://developer.microsoft.com/en-us/games/articles/2025/03/gdc-2025-build-insights-call-of-duty-modern-warfare/
https://developer.microsoft.com/en-us/games/articles/2025/03/gdc-2025-build-insights-call-of-duty-modern-warfare/

Function Inlining - A Real-World Case 2/2

“This issue often arises in patterns where an inlined function is repeatedly
called within constructs like switch statements..
...restructuring the code to defer the call until after the switch ...we were
able to reduce it from 70 seconds to just 1.5 seconds” 73/114

Template

Template Metaprogramming Cost 1/6

Type Based Template Metaprogramming is Not Dead �, Odin Holmes, C++Now 2017 74/114

https://www.youtube.com/watch?v=EtU4RDCCsiU

Template Metaprogramming Cost 2/6

(1) SFINAE

template<typename T>
std::enable_if_t<std::is_integral_v<T>>
foo(T) {}

(2) Instantiating a function template

template<typename T>
T my_function(T x) {

return x;
}
int main() {

return f(1); // instantiates my_function<int>
}

75/114

Template Metaprogramming Cost 3/6

(3) Instantiating a type (class template)
template<typename T>
struct MyClass {

T value;
};
int main() {

MyClass<int> b{42}; // instantiates MyClass<int>
}

(4) Calling an alias
template<typename T>
using ptr_t = T*; // alias template

int main() {
ptr_t<int> p = nullptr; // "calls" ptr_t with T = int

} 76/114

Template Metaprogramming Cost 4/6

(5) Adding a parameter to a type

template<typename... Ts>
struct type_list {};

template<typename... Ts>
struct type_list_add_void {

using type = type_list<Ts..., void>;
};

int main() {
using List1 = type_list<int, double>;
// struct instantiation with a new paramter
using List2 = type_list_add_void<int, double>::type;

}

77/114

Template Metaprogramming Cost 5/6

(6) Adding a parameter to an alias call
template<typename... Ts>
struct type_list {};

template<typename... Ts>
using type_list_alias = type_list<Ts...>;

template<typename... Ts>
using type_list_alias_add_void = type_list_alias<Ts..., void>;

int main() {
using List1 = type_list_alias<int, double>;
// alias call with an additional parameter
using List2 = type_list_alias_add_void<int, double>;

}
78/114

Template Metaprogramming Cost 6/6

(7) Looking up a memoized type

include <vector>

using memoized_type = std::vector<int>;

int main() {
memoized_type v1; // first instantiation -> expensive
memoized_type v2; // no new template instantiation, only a lookup -> cheap

}

79/114

extern template 1/2

extern template allows to suppress implicit instantiation of specific template class
or function in a translation unit.

Template entities are commonly defined in headers and included in multiple translation
units. Every time a template is instantiated, the compiler needs to independently
process it for each translation unit, generating redundant work.

Explicit or implicit instantiation can be used to select what translation unit processes
and stores the template instantation.

• Explicit, template class MyClass<int>;
• Implicit, MyClass<int> m;

The technique is hard to maintain for all instantions but it is effective when targets
specific and expensive template functions or classes.

80/114

extern template 2/2

header.hpp

template <typename T>
struct A { /*heavy code*/ };

template <typename T>
void f(T) { /*heavy code*/ };

main.cpp
include "header.hpp"
// skip instantiations
extern template class A<int>;
extern template void f<double>();

int main() {
A<int> a;
f(3.4);

}

source.cpp
include "header.hpp"

void g() {
f(5.0);
A<int> a2;

}
// or alternatively:
// template void f<double>();
// template class A<int>; 81/114

constexpr Variable vs. Template Structure + static Data Member 1/2

Template structure + static data member:

template <typename T>
struct A {

static constexpr int value = sizeof(T) * sizeof(T);
};

constexpr variable:

template <typename T>
constexpr int value_v = sizeof(T) * sizeof(T);

82/114

constexpr Variable vs. Template Structure + static Data Member 2/2

Template constexpr variables reduce the compile time compared to template class
+ a static data member by:

• Instantiating only the variable specialization itself.

• Reducing the amount of source the compiler needs to parse and process.

• Lowering the complexity of the abstract syntax tree (AST).

• Decreasing the number of symbols generated.

• Simplifying name lookup complexity by removing a level of template indirection.
value_v<int> avoids the extra indirection of A<int>::value .

83/114

Tag Dispatching 1/2

Tag dispatching is a technique where different function declarations are selected at
compile time by overloading on a "tag" parameter. While it avoids SFINAE in
signatures, it introduces expensive overload resolution.
template <typename T>
T my_abs(std::true_type, T data) {

return data;
}
template <typename T>
T my_abs(std::false_type, T data) {

return data < 0 ? -data : data;
}
template <typename T>
T my_abs(T data) {

return my_abs(std::is_unsigned_v<T>, data);
}

84/114

Tag Dispatching 2/2

Tag dispatching affects the compile time by introduction new functions in the overload
set. The overload resolution phase is also repeated for each instantiated "tag".

A better solution is relying on if constexpr whenever possible

template <typename T>
T my_abs(T data) {

if constexpr (std::is_unsigned_v<T>) {
return data;

}
else {

return data < 0 ? -data : data;
}

}

85/114

Fold Expressions 1/2

Fold expressions can reduce compile time by avoiding recursive template instantiations
and SFINAE.

Problem: compute the total size in bytes of a list of types at compile time.

Supposing a list of 10 types, a recursive template implementation requires the
instantiation of 11 template structures.
template <typename T, typename... TArgs>
struct SizeOfTypes {

static constexpr auto value = sizeof(T) + SizeOfTypes<TArgs...>::value;
};
template <>
struct SizeOfType<> {

static constexpr size_t value = 0;
};

86/114

Fold Expressions 2/2

While an implementation based on fold expression only requires one template
instantiation.

template<typename... TArgs>
struct SizeOfTypes {

static constexpr auto value = sizeof(TArgs) + ...;
};

87/114

Concepts

C++20 concepts constrain the set of arguments that are accepted as template
parameters. They are a superior alternative to SFINAE.

C++20 concepts can reduce compile times when they replace complex SFINAE or
tag-dispatch patterns because they avoid template parsing and instantiatiation.

Compile time results related to C++20 concepts usage are mixed. A user reported
20% faster build with range v3 � library 1, while a stress test comparing requires
and enable_if showed a compile time increase in several cases 2.

[1] Do C++20 concepts change compile-time, positively or not?

[2] A compile-time benchmark for enable_if and requires 88/114

https://github.com/ericniebler/range-v3
https://www.reddit.com/r/cpp/comments/uqqe27/do_c20_concepts_change_compiletime_positively_or/
https://quuxplusone.github.io/blog/2021/09/04/enable-if-benchmark/

auto

C++11 auto keyword, an related C++20 extension to parameters, is mostly a
syntactic simplification and has no noticeable compile-time advantage over templates.
Under the hood, the compiler still instantiates template code.

auto might provide two indirect advantages:

• Less code to parse compared for complex type traits.
• Avoid return type SFINAE when combined with if constexpr .

template<typename T>
std::enable_if_t<cond1, R1> f(T) {

/*code1*/
}
template<typename T>
std::enable_if_t<cond2, R2> f(T) {

/*code2*/
}

template<typename T>
auto f(T) {

if constexpr (cond1) {
return R1;

}
else if constexpr (cond2) {

return R2;
}

89/114

using Type Aliasing

Type aliasing is merely a naming mechanism and does not by itself reduce template
instantiation work.

On the other hand, it is strongly suggested to use type aliasing instead of creating new
types because it increases the likelihood of reusing a previously instantiated template.

struct MyNewType : MyComplexType<int> {};
to

using MyNewType = MyComplexType<int>;

Exception: C++20 Template automatic deduction (CTAD) with type aliasing works
only with trivial template argument forwarding. Any transformation on template
arguments prevents CTAD.

90/114

Other Aspects

C++20 Modules 1/3

Header inclusion is one of the major causes of long compile time. C++20 modules are
a modern replacement to the traditional #include system. Modules can be
considered a standardized and enhanced form of Precompiled Header (PCH).

The compiler parses module, builds binary module interface (BMI) files once, and reuse
them across translation units, avoiding repeated work.

Key benefits:

• Parsing binary files is more efficient than parsing text files.
• Clear boundaries help to better isolate the code.
• Speed up incremental rebuilds.

91/114

C++20 Modules - Compile Time Improvements 2/3

• Boost Asio-based server + module-based libc++ : 45% reduction 1.

• Alibaba Cloud Hologres, a real-time data warehousing service: 42% reduction
2, 3.

• A study on scientific software packages showed 10% reduction for large projects
and 22% on smaller ones 4.

[1] C++20 modules and Boost: deep dive.
[2] 42% Boost in Compilation Efficiency! A Practical Analysis of C++ Modules

[3] Compilation Speedup Using C++ Modules: A Case Study - Chuanqi Xu - CppCon 2022

[4] Experience converting a large mathematical software package written in C++ to
C++20 modules 92/114

https://anarthal.github.io/cppblog/modules2
https://www.alibabacloud.com/blog/42%25-boost-in-compilation-efficiency-a-practical-analysis-of-c%2B%2B-modules_601974
https://www.youtube.com/watch?v=0f5N1JKo4D4
https://arxiv.org/pdf/2506.21654
https://arxiv.org/pdf/2506.21654

C++20 Modules - Drawbacks 3/3

• clang documentation � highlights that higher optimization level could shrink
the advantages of modules. This is because Inter-Procedural Optimization/
Link-Time Optimization require to reprocess the code in the importee units.

• Only 62 over 2,443 popular C++ projects (2.5%) actually implement modules,
see Are We Modules Yet? �

• Require recent tools: gcc 14+, clang 16+, Visual Studio 17.4+, CMake
3.28+, recent version of ninja.

• Non-trivial #include to modules porting work �: macro reorganization,
track “internal" vs “public" headers rigorously, and take care of re-export imported
module.

93/114

https://clang.llvm.org/docs/StandardCPlusPlusModules.html#how-modules-speed-up-compilation
https://arewemodulesyet.org/
https://arxiv.org/pdf/2506.21654

Overload Resolution 1/2

For each function call, the compiler must consider all possible function declarations
across the overload set to choose the best match. The main steps are name lookup
(lightweight) and overload resolution (expensive).

The overload resolution process consists in three main phases:

(1) Generates a set of candidate functions, namely function overloads.

(2) Filters them into viable functions, considering number of parameters, their types,
and potential conversions.

(3) Selects the best viable function by evaluation exact parameter type match,
conversion, and promotion.

Function templates requires additional work because the compiler needs to consider
template argument deduction. 94/114

Overload Resolution 2/2

The compiler work is proportional to the number of function calls and function
overloads.

Practical considerations:

• Filtering based on number of parameters is cheaper than other rules.

• Function template overloads are more expensive to evaluate than standard
functions.

• C++20 template constrains help to reduce the number of viable candidates.

• Namespace also helps to reduce the number of viable candidates, while
using namespace has the opposite effect, forcing the compiler to consider more
overloads.

95/114

Other Code Aspects

• Unused headers can significantly affect build time but removing them is not a
trivial process. It can be done manually (not recommended), or with tools:

- clangd � header fixes within the IDE, sometimes not precise.

- include-what-you-use � precise but hard to configure. See section 5.

• Defining function bodies out-of-line (.cpp file) improves build time because
implementation changes involves the recompilation of a single translation unit
instead of many. See also the PIMPL idiom at section 4.

• std::function 37 percent of HyperRogue’s compilation time is due
to std::function �.

Improving compile times of C++ code 96/114

https://clangd.llvm.org/
https://include-what-you-use.org/
https://quuxplusone.github.io/blog/2019/01/06/hyper-function/
https://quuxplusone.github.io/blog/2019/01/06/hyper-function/
https://vitaut.net/posts/2017/improving-compile-times/

Pointer Implementation (PIMPL)

Pointer IMPLementation (PIMPL) reduces build time by avoiding header
dependencies. The idiom separates class interface and implementation details, namely
private data members and methods.
pragma once
include <memory>

class MyClass {
public:

MyClass();
~MyClass();
void set(int x);
int get() const;

private:
struct Impl; // forward declaration, implemented in a .cpp file
std::unique_ptr<Impl> p_; // opaque pointer to implementation

};

97/114

Include Guard vs. #pragma once

Include guard based on macro definition requires the compiler to read a header
multiple times. The header is parsed once, while the following reads exclude the code
protected by the guard macro.

With #pragma once , the compiler marks the file as “already included” and, on
subsequent inclusions, skips reading the file entirely, reducing I/O.

It is important to note that modern compilers, such as Clang, GCC, and MSVC,
implement the #pragma once optimization even for include guard macro, avoid
rereading the same header multiple times.

98/114

Static vs. Dynamic Linking

Dynamic linking requires libraries built as independent shared objects. The main
executable links against them at run-time without embedding all their code. Dynamic
linking doesn’t practically affect the linking time.

On the contrary, static linking is potentially expensive because it involves loading
library files (often very large), symbol resolution, section merging, relocation, and
potentially Link-Time Optimization.

99/114

Comments and Formatting

Compile-time impact of comments and empty lines (include only):

Header Lines Code Comments Empty Lines Time (msec)

Original header 26,007 3,143 21,807 1,057 42.65

No Comments 26,007 3,143 0 22,864 41.29

No Comments and
no Empty Lines

26,007 3,143 0 0 6.06

Tested with gcc 14 and clang 20

Removing comments had negligible effect, while eliminating empty lines dramatically
reduced compile time.

Different coding style and formatting could also affect compile time. For example,
placing opening brackets { on the same line or a new one. 100/114

External Factors

In addition to examining the building process itself, it is important to consider
external factors, such as how the operating system manages processes, as these can
significantly impact build time:

• Terminate memory, computing, I/O intensive, programs and services. Two
examples are Windows file search indexing and antivirus.

• Set CPU scaling governor to performance, see the lecture “Optimization III:
Non-Coding Optimizations and Benchmarking”.

• Do not use remote file system as build or temporary directories. Network latency
can severely slow down the build process.

• Increase build process priority.
101/114

Tools to Analyze
Build Time

Clang Build-Time Analysis 1/4

Clang mainly provides three options to analyze the build progress:

-fproc-stat-report Print used memory and execution time of each compilation step
(also available in GCC).

-ftime-report Print time spent during compilation phases.

-ftime-trace Generate Clang timing information in the Chrome Trace Event
format (JSON).

102/114

Clang Build-Time Analysis 2/4

-ftime-report :
phase last asm : 0.08 (2%) 0.00 (0%) 0.09 (1%) 2921 kB (1%)
|name lookup : 0.18 (5%) 0.10 (7%) 0.27 (4%) 4820 kB (2%)
|overload resolution : 0.13 (4%) 0.12 (9%) 0.31 (5%) 26374 kB (10%)
dump files : 0.08 (2%) 0.01 (1%) 0.04 (1%) 0 kB (0%)
callgraph construction : 0.08 (2%) 0.02 (1%) 0.11 (2%) 12160 kB (4%)
callgraph optimization : 0.02 (1%) 0.02 (1%) 0.04 (1%) 87 kB (0%)
ipa function summary : 0.00 (0%) 0.01 (1%) 0.02 (0%) 808 kB (0%)
ipa cp : 0.01 (0%) 0.01 (1%) 0.01 (0%) 564 kB (0%)
ipa inlining heuristics : 0.01 (0%) 0.00 (0%) 0.02 (0%) 807 kB (0%)
ipa function splitting : 0.01 (0%) 0.00 (0%) 0.02 (0%) 233 kB (0%)
ipa pure const : 0.02 (1%) 0.00 (0%) 0.01 (0%) 22 kB (0%)
ipa icf : 0.01 (0%) 0.00 (0%) 0.02 (0%) 0 kB (0%)
ipa SRA : 0.07 (2%) 0.02 (1%) 0.10 (2%) 6231 kB (2%)

Investigating compile times, and Clang -ftime-report
103/114

https://aras-p.info/blog/2019/01/12/Investigating-compile-times-and-Clang-ftime-report/

Clang Build-Time Analysis 3/4

-fproc-stat-report :

example:
clang -fproc-stat-report=report.csv main.cpp

output:
total execution time in microseconds, user mode, peak memory usage in Kb
clang-11,"/tmp/main-123456.o",92000,84000,87536
ld,"a.out",900,8000,53568

Clang Compiler User’s Manual

104/114

https://clang.llvm.org/docs/UsersManual.html#cmdoption-fproc-stat-report

Clang Build-Time Analysis 4/4

-ftime-trace :

example:
clang -ftime-trace=report.json main.cpp

output:

Clang - Performance Investigation
105/114

https://clang.llvm.org/docs/analyzer/developer-docs/PerformanceInvestigation.html

ninjatracing 1/2

ninjatracing � is a tool to convert .ninja_log files to chrome’s about:tracing
format.
cmake -G Ninja .. # use the Ninja build system
ninja # generate .ninja_log
ninjatracing .ninja_log > trace.json
#open about:tracing in a chrome-based browser

106/114

https://github.com/nico/ninjatracing

ninjatracing 2/2

ninjatracing can combine the output of ninja and clang -ftime-trace with the
option -e .

ninjatracing -e .ninja_log > trace.json

Craig Scott - Build Performance Insights
107/114

https://crascit.com/2022/06/24/build-performance-insights/

Templight

Templight � is a Clang-based tool to profile the time and memory consumption of
template instantiations.
TemplateInstantiation CompleteTranslationUnit 6.635999943
0.48000000 TemplateInstantiation std::make_shared<TDataFrameAction

<(lambda at /home/eguiraud/ROOT/root_install/include/ROOT/TDataFrame.hxx:739:31),
TDataFrameImpl>

TemplateInstantiation std::make_shared<TDataFrameAction
<(lambda at /home/eguiraud/ROOT/root_install/include/ROOT/TDataFrame.hxx:744:31),
TDataFrameImpl>

TemplateInstantiation std::make_shared<Operations::FillTOperation, std::shared_ptr<TH1F>&,
unsigned int> 0.12800000

TemplateInstantiation std::make_shared<TH1F, TH1F&> 0.11600000
TemplateInstantiation std::make_shared<Operations::FillOperation, std::shared_ptr<TH1F>,

unsigned int&> 0.11599999
TemplateInstantiation std::make_shared<bool, bool> 0.10800000

Templight has not been updated recently. For instance, LLVM 15 is not supported.
108/114

https://github.com/mikael-s-persson/templight

Build Bench

Build Bench � is a tool to quickly and simply compare the build time of code
snippets with various compilers.
"Hello world" example, cstdio vs. iostream

109/114

https://build-bench.com/

VisualStudio - CompileScore

VisualStudio - CompileScore � is an utility to display compilation profiling data
directly inside Visual Studio. The tool uses clang to profile the compilation process.

110/114

https://github.com/Viladoman/CompileScore

VisualStudio - C++ Build Insights 1/2

C++ Build Insights � is a set of build-profiling tools for MSVC that collects
detailed compilation trace data and help finding where build time is being spent.

Such insights include:

• degree of parallelization
• switch to precompiled header (PCH)
• dominant compilation phase (parsing, code generation, or linking)
• aggregated statistics such as “most expensive headers/files to parse”

111/114

https://devblogs.microsoft.com/cppblog/introducing-c-build-insights/

VisualStudio - C++ Build Insights 2/2

112/114

VisualStudio - GitHub Copilot Build Performance

GitHub Copilot Build Performance � will use an agent to:

• Kick off a build and capture a trace for you
• Identify expensive headers and other bottlenecks
• Suggest and apply optimizations like precompiled headers
• Validate changes through rebuilds so your code stays correct
• Show you measurable improvements and recommend next steps

113/114

https://devblogs.microsoft.com/cppblog/optimize-your-c-build-times-with-github-copilot/

References

References

• The Hitchhiker’s Guide to FASTER BUILDS �, Viktor Kirilov (2019 edition)

• Chromium - Tips for improving build speed on Linux �

• Common-sense acceleration of your MLOC build, Matt Hargett,
CppCon14 �

• The Complete Guide to Speed Up Your C++ Builds �

• Further Build Performance Optimizations �

114/114

https://slides.com/onqtam/faster_builds/
https://chromium.googlesource.com/chromium/src/+/9c60333a0/docs/linux_faster_builds.md
https://www.youtube.com/watch?v=t4M3yG1dWho
https://www.youtube.com/watch?v=t4M3yG1dWho
https://www.incredibuild.com/wp-content/uploads/2020/09/The-complete-guide-to-speed-up-your-builds-v7-1.pdf
https://docs.incredibuild.com/win/10_17/windows/Further-Build-Performance-Optimizations.html

	Compile Time Introduction
	The Importance of Build Time
	Causes of Long Build Time

	Compiler Aspects
	Compiler Flags
	Optimized Compiler Builts

	C++ Standard Version
	Precompiled Header (PCH)
	Linker Aspects
	Link Time Optimization (LTO)
	Thin Link Time Optimization (ThinLTO)
	Main Linkers
	Linker Flags

	Unity Build
	Tools for Reducing Build Time
	ninja
	Compiler Cache
	Distributed Compilation
	RAM Disk
	Include-What-You-Use (IWYU)

	Function Inlining
	Template
	Template Metaprogramming Cost
	extern template
	constexpr Variable vs. Template Structure + static Data Member
	Tag Dispatching
	Fold Expressions
	C++20 Concepts
	auto
	using Type Aliasing

	Other Aspects
	C++20 Modules
	Overload Resolution
	Other Code Aspects
	Pointer Implementation (PIMPL)
	Include Guard vs. #pragma once
	Static vs. Dynamic Linking
	Comments and Formatting
	External Factors

	Tools to Analyze Build Time
	Clang Build-Time Analysis
	ninjatracing
	Templight
	Build Bench
	VisualStudio - CompileScore
	VisualStudio - C++ Build Insights

	References

