
Modern C++
Programming
28. Binary Size

Federico Busato
2026-01-09

Table of Contents

1 Binary Size Introduction

2 Compiler and Linker Techniques
Optimization Flags

Debugging and Runtime Information Flags

Symbol Visibility

Exceptions Flags

Linker Flags

Link-Time Optimization (LTO)

CMake Support

1/38

Table of Contents

3 Coding Aspects
Function Inlining

Function Visibility

Templates

Static Storage Duration

Linkage

Polymorphic classes

Exceptions

Header Inclusion

2/38

Table of Contents

4 Binary Size Tools
nm and objdump

Bloaty

Executable Packer

3/38

Binary Size
Introduction

Binary Size

4/38

Binary Size - Examples

• Android Games: ≤ 1 GB

• Safari Browser: 1.4 GB on Mac

• The CUDA Tookit: 3 GB+

• Microsoft Edge: 3.6 GB+

• Latex: 7 GB+ (TeX Live)

• Windows 11/macOS 14: 20 GB+

• Matlab: 23 GB+ full

• Microsoft Office: 100 GB+ full

Unusual Speed Boost: Binary Size Matters 5/38

https://webkit.org/blog/2826/unusual-speed-boost-size-matters/

Impact of Binary Size

Software distribution:
• Download time.
• Data transfer cost.
• Storage cost.
• The effects are also exaggerated by update distributions or third-party integration.

Performance/Resources

• Compile and linking time.
• Run-time performance: Large binaries can lead to poor memory locality

(instruction-cache, L1/L2/L3 cache misses, page faults).
• Startup time: loading the binary from disk.
• Disk and memory usage, very important on embedded systems.

6/38

Techniques to Reduce the Binary Size

• Control compiler optimizations, hardware targets (vectorization), and exported
symbols.

• Minimize C++ code generation, e.g. templates, inlining, exceptions, etc.

• Functions and classes organization, e.g. external linkage.

• Dependencies management, e.g. headers, shared libraries, raw data, etc.

• Just-in-time compilation (advanced).

• Compression (advanced).

7/38

Compiler and Linker
Techniques

Overview of Compiler and Linker Techniques

One of the most effective ways to reduce binary size with little effort is to instruct the
compiler to optimize for size instead of performance.

Runtime exceptions require the compiler to introduce additional code to handle
them, example �. The user can control how the compiler treats exceptions.

Link-Time Optimization (LTO) can help reduce binary size, analyzing the entire
program to remove unused code (dead code elimination), function inlining across
different modules to optimize code usage, and devirtualization to replace virtual
methods (vtable) with direct calls when possible.

8/38

https://godbolt.org/z/MarPhPMTs

Optimization Flags

-Os , /O1 Prioritizes reducing binary size over speed improvements.
Enable all -O2 optimizations that do not increase code size, e.g. dead code
elimination, constant propagation, expression simplification, etc. and exclude
techniques such as loop unrolling, strong function inlining, code alignment,
etc.

-Oz Aggressive size optimization, omitting performance optimizations.
Supported by Arm and proprietary compilers but not by GCC/Clang. Might
result in slower code, loop unrolling and loop vectorization are disabled, loops
are generated as while loops instead of do-while loops.

ARM - Selecting optimization options 9/38

https://developer.arm.com/documentation/100748/0624/Using-Common-Compiler-Options/Selecting-optimization-options

Optimization Flags

-Omin Smaller size than -Oz by exploiting a subset of LTO functionalities.
Relying on LTO to remove unused code and data and try to eliminate virtual
functions. Not supported by GCC/Clang.

-fipa-icf InterProcedural Analysis - Identical Code Folding detects and unifies
variables with identical values and functions with the exact machine code
reducing code size without changing observable behavior

Safe ICF: Pointer Safe and Unwinding Aware Identical Code Folding in Gold GCC
Optimization Options 10/38

https://research.google/pubs/safe-icf-pointer-safe-and-unwinding-aware-identical-code-folding-in-gold/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Debugging and Runtime Information Flags

-g , -g<N> , /DEBUG Generate debugging information. Ensure the flag is not present.
Debugging information could significantly increase the binary size
up to 60-80%. -g3 up to 120-160%.

-DNDEBUG
/DNDEBUG

Remove assertions which contribute to the binary size.

-fno-rtti , /GR- Disable Run-Time Type Information,
such as typeid and dynamic_cast . The flag has negligible
impact.

Binary sizes and RTTI
11/38

https://www.sandordargo.com/blog/2023/03/01/binary-sizes-and-rtti

Symbol Visibility

Exported symbols are stored in the symbol table, which includes their fully mangled
names. They are used for debugging purposes. The associated names can become very
long due to templates and namespaces, leading to large symbol tables and bloating the
binary size. This aspect can be controlled by function attributes and compiler options.

• -fvisibility=hidden
Sets the default visibility of symbols to hidden (not exported).
The flag can reduce the binary size of dynamic libraries by 5-20%, up to 80% in
extreme cases. The exported functions need to be explicitly marked with
[[gnu::visibility("default")]] / __declspec(dllexport) .

• -fvisibility-inlines-hidden
Sets the visibility of inlined functions to hidden.

Why is the new C++ visibility support so useful?
12/38

https://gcc.gnu.org/wiki/Visibility

Exceptions Flags

-fno-exceptions , /EHsc Remove exception handling code. The flag has negligible
impact in general, especially with optimizations. Result:
exceptions are replaced by std::abort .

-fno-unwind-tables Remove unwind tables for exception handling. Unwind
tables are metadata introduced in the code used to reverse
the effects of function calls when an exception occurs.
Removing them could reduce the binary size about ∼10-15%.

-D_HAS_EXCEPTIONS=0
/D_HAS_EXCEPTIONS=0

Disable exceptions in the standard library.

• Binary size and exceptions

• The true cost of C++ exceptions
13/38

https://www.sandordargo.com/blog/2023/03/29/binary-size-and-exceptions
https://mmomtchev.medium.com/the-true-cost-of-c-exceptions-7be7614b5d84

Linker Flags 1/3

-s , -Wl,-s [GCC/Clang] Remove all symbol tables and relocation information.
Relocation information is needed by shared libraries and for
security purposes.

Alternatively, the programs strip -s / strip.exe can be used after
the binary is compiled. For shared libraries the tool provides the flag
--strip-unneeded to remove all symbols that are not needed for
relocation in addition to debugging symbols.

-fpic/-fPIC Don’t use Position-Independent Code if the target is not a share library.

-fpie/-fPIE Don’t use Position-Independent Executable if security features like
Address Space Layout Randomization (ASLR) are not needed.

14/38

Linker Techniques 2/3

-Wl,--gc-sections Perform garbage collection on sections (functions or data)
that are not referenced anywhere in the whole program. To
be effective, the linker flag should be also combined with the
compiler flags -ffunction-sections and
-fdata-sections . The flags place global/static variables
and functions into its own section of the object file to help
the linker.

-Wl,--exclude-libs,ALL Don’t export symbols of static libraries that are linked when
creating shared libraries.

15/38

Linker Techniques 3/3

-Wl,-nmagic Turn off page memory alignment of sections.

-Wl,–pack-dyn-relocs=relr Dynamic relocations are information stored in shared
library used by the runtime loader resolves to map the
code into memory. The flag packs dynamic relocations to
reduce their size in the final ELF by using more compact
encodings.

16/38

Link-Time Optimization (LTO)

-flto Enable Link Time Optimizations.
The flag must be used in both compile and link stages. It could reduce the
binary size by 30%, especially if combined with optimization flags that
doesn’t increase the binary size. In other cases, the flag could have the
opposite result, increasing the binary size.

• Link-Time Optimizations: New Way to Do Compiler Optimizations

• Linktime optimization in GCC, part 3 - LibreOffice 17/38

https://johnnysswlab.com/link-time-optimizations-new-way-to-do-compiler-optimizations/
https://hubicka.blogspot.com/2014/09/linktime-optimization-in-gcc-part-3.html

CMake Support

set_target_properties(my_program PROPERTIES
C_VISIBILITY_PRESET hidden
CXX_VISIBILITY_PRESET hidden
VISIBILITY_INLINES_HIDDEN YES

)

set_property(TARGET my_program PROPERTY
INTERPROCEDURAL_OPTIMIZATION ON # LTO

)

18/38

References

• Trying to minimize C/C++ binary size as much as possible �

• How to make smaller C and C++ binaries �

• How to minimize Rust binary size �

• State of the art for reducing executable size with heavily
optimized program �

19/38

https://www.reddit.com/r/cpp_questions/comments/ljrzvg/trying_to_minimize_cc_binary_size_as_much_as/
https://ptspts.blogspot.com/2013/12/how-to-make-smaller-c-and-c-binaries.html
https://github.com/johnthagen/min-sized-rust
https://discourse.llvm.org/t/state-of-the-art-for-reducing-executable-size-with-heavily-optimized-program/87952
https://discourse.llvm.org/t/state-of-the-art-for-reducing-executable-size-with-heavily-optimized-program/87952

Coding Aspects

Function Inlining

Function inlining doesn’t automatically translate in larger binary size:

• Inlining can reduce code size if the function body is smaller than the overhead of
a function call (parameters, returning values, function call/jump).

• Inlining increases code size for non-trivial functions due to duplicating the
function body at each call site.

• Inlining is controlled by
◦ Compiler optimization flags, e.g. -O3 , -finline-functions .
◦ Function size and inlining depth.
◦ Function decorators: inline (increase inlining heuristic), __forceinline ,

[[gnu::always_inline]] .

20/38

Function Visibility

All functions that are not part of the public interface should be declared with hidden
visibility [[gnu::visibility("hidden")]] to avoid exporting the associated
symbols.

[[gnu::visibility("hidden")]]
void private_function() { ... };

void public_function() { private_function(); }

// -fvisibility=hidden
void private_function() { ... };

[[gnu::visibility("default")]]
void public_function() { private_function(); }

21/38

Templates Introduction

Templates allow creating generalized versions of functions, classes, and variables that
work with different data types or compile-time constants.

Even minimal template instantiation, like type traits, costs 1KB of binary size.

Template code can have a large impact on binary size because the compiler generates
code for each instantiation.

Because the generation process is automatic and implicit, it is often difficult to keep
track of all instantiations, causing the size of the binary to grow rapidly. The problem
is exacerbated by multiple template entities, nested calls, and metaprogramming.

• 2024 LLVM Dev Mtg - Generic implementation strategies in Carbon and Clang �

• Factoid: Each class template instantiation costs 1KiB � 22/38

https://www.youtube.com/watch?v=j0BL52NdjAU
https://discourse.llvm.org/t/factoid-each-class-template-instantiation-costs-1kib/86189/6

Template Instantiation 1/4

A template class/function is instantiated in the following cases:

Class/Function Full specialization.

Class/Function Explicit instantiation.

Class/Function The template is defined/called within the body of a fully
specialized/non-template function or class.

Class A function has a specialized template class return type and the
function is defined (body) or called.

Build Throughput Series: Template Metaprogramming Fundamentals
23/38

https://devblogs.microsoft.com/cppblog/build-throughput-series-template-metaprogramming-fundamentals/

Template Instantiation 2/4

A template is not instantiated in the following cases:

• A pointer to a specialized template class.

• A type declaration.

• The template class/function is defined within the body of a non-fully
specialized function or class, and depends on their template parameters.

The compiler doesn’t generate the code of a template class/functions if it has
already been instantiated before in the same translation unit.

24/38

Template Instantiation 3/4

void f() { std::array<int, 2> array; } // first instantiation

struct A {
std::array<float, 2> array; // second instantiation

};void f(std::array<int, 2>* array); // not instantiated
void f(std::array<int, 2>& array); // instantiated

struct A {
std::array<float, 2>* array1; // not instantiated
std::array<float, 2>& array2; // instantiated

};std::array<int, 2> f(); // not instantiated
f(); // std::array<int, 2> instantiated

25/38

Template Instantiation 4/4

template<typename T, int N>
void f() { std::array<T, N> array; } // not instantiated

f<int, 4>(); // std::array<int, 4> instantiated

template<typename T, int N>
struct A {

std::array<T, N> array; // not instantiated
};
template<typename T>
struct A<T, 3> {

std::array<T, 3> array; // not instantiated
};

template struct A<int, 3>; // std::array<int, 3> instantiated

26/38

Template - Type Erasure

Templates are often overutilized even for simple functionalities. Type erasure can be
useful for reducing the number of template instantiations.

template<typename T>
T* align1(T* ptr, size_t align_size) {

return ptr + (align_size - reiterpret_cast<uintptr_t>(ptr) % align_size);
} // one instantiation for each type

const void* align2(const void* ptr, size_t align_size) {
return ptr + (align_size - reiterpret_cast<uintptr_t>(ptr) % align_size);

}

27/38

Static Storage Duration

Global variables and local scope static variables have static storage duration and
persist for the program lifetime. They directly contribute to the binary size, requiring
space in the data segment (initialized) and BSS (Block Started by Symbol,
uninitialized).

If multiple translation units need the same global variable, it should be:

• declared extern in each translation unit and defined in a single source file.

• defined inline in a single header to include in each translation unit.

28/38

Linkage

• Entities with internal linkage (static , anonymous namespace) should never be
declared in headers to avoid duplication in any translation units that include them.

• Entities that are intended to be used only within a single translation unit should
have internal linkage to avoid exporting the symbol and save space.
In addition, internal linkage often enables optimizations, such as dead code
elimination and function removal, which can further reduce the binary size when
combined with the --gc-sections flag.

• Global const / constexpr variables have internal linkage, as static
variables. When declared in headers, they should be marked inline to allow the
linker to remove duplicate copies.

29/38

Polymorphic classes

A polymorphic class is any class that declares or inherits at least one virtual
method. The run-time dispatch mechanism relies on the virtual table (vTable).

A polymorphic class increases binary size significantly, up to 10 times, compared to a
non-virtual class due to the vtable and associated metadata.
Most of the overhead comes from the introduction of the first virtual method,
while the next ones have a negligible impact.

Special functions and binary sizes 30/38

https://www.sandordargo.com/blog/2023/02/01/special-functions-and-binary-sizes

Exceptions

noexcept informs the compiler that a function will not throw exceptions, which could
potentially reduce the binary size:

• The compiler avoids exception handling code and metadata generation.

• noexcept is particularly useful for cross-translation-unit (LTO) optimizations,
because the linker can make strong assumptions about function behavior.

• Functions without exceptions are more likely to be inlined.

31/38

Header Inclusion 1/4

Merely including headers in source files, even large ones, doesn’t directly increase the
size of the binary. On the other hand, they do affect binary size, depending on their
content and how they are used.

Contribution to the binary size:

• Symbols with internal linkage: each translation unit gets its own copy.
The compiler is able to remove unused symbols (dead code elimitation).

• Inline functions and variables: code generation, inlining, and symbol table.
The linker is able to remove duplicate symbols.

• Templates: contribute in the same way of regular classes, functions, and
variables, but only if they are instantiated.
The linker is able to remove identical template instantiations.

32/38

Header Inclusion and Polymorphic Classes 2/4

When a polymorphic class is defined in a header, the compiler maintains a copy of
the vTable and RTTI data for each translation unit.

Modern compilers emit the vTables in a special section called COMDAT. Linkers that
support this feature are able to remove duplicate copies in the final program.

Another solution to reduce binary size is to move the implementation of virtual
methods into a dedicated source file, since the vTables and metadata are generated
only once, not per translation unit.

• GCC ld: Vague Linkage
• LLVM ldd: Missing Key Function 33/38

https://gcc.gnu.org/onlinedocs/gcc/Vague-Linkage.html
https://lld.llvm.org/missingkeyfunction.html

Header Inclusion and Software Distribution 3/4

It is important to note that the program is often distributed as a header library or as a
static library, namely a collection of object files. In these cases, the behavior of the
linker is beyond the control of the developer, and the final program cannot rely on
linker techniques to reduce binary size. Aspects such as internal linkage, exported
symbols, and polymorphic classes must be addressed directly.

Secondly, even if the linker is involved in program generation, the size of object files
can still affect intermediate compilation steps, affecting their load time, disk size, and
memory footprint.

34/38

Header Inclusion - The Standard Library 4/4

Tools like C++ Compile Health Watchdog � and STL Explorer � show the impact
of including the standard library headers, in terms of binary size and dependencies,
respectively.

35/38

https://artificial-mind.net/projects/compile-health/
https://s9w.github.io/stl_explorer/explorer.html

Binary Size Tools

nm and objdump

nm � and objdump � are standard tools available on Linux systems for analyzing binary
size.

nm can list non-stripped symbols in a binary and their associated sizes:

nm --print-size --size-sort <binary>

objdump can provide information related to each section of the binary which is useful
for understanding how much space code, data, and other sections occupy.

objdump --headers <binary>

36/38

https://man7.org/linux/man-pages/man1/nm.1.html
https://man7.org/linux/man-pages/man1/objdump.1.html

Bloaty

Bloaty � is an advanced tool for performing deep analysis of a binary. The tool allows
to analyze multiple object files in a simple way, filter binary information depending on
its sections or debugging symbols, and even track binary growth over time for CI
testing.
$./bloaty bloaty -d compileunits

FILE SIZE VM SIZE
-------------- --------------
34.8% 10.2Mi 43.4% 2.91Mi [163 Others]
17.2% 5.08Mi 4.3% 295Ki third_party/protobuf/src/google/protobuf/descriptor.cc
7.3% 2.14Mi 2.6% 179Ki third_party/protobuf/src/google/protobuf/descriptor.pb.cc
4.6% 1.36Mi 1.1% 78.4Ki third_party/protobuf/src/google/protobuf/text_format.cc
3.7% 1.10Mi 4.5% 311Ki third_party/capstone/arch/ARM/ARMDisassembler.c
1.3% 399Ki 15.9% 1.07Mi third_party/capstone/arch/M68K/M68KDisassembler.c

37/38

https://github.com/google/bloaty

Executable Packer

An executable Packer is a tool for compressing executable binaries and shared
libraries to reduce their size without changing their functionality. The binary is
compressed offline, then the embedded decompression routine rebuilds the original
code at runtime before actual execution. Binary compression aims at reducing
distribution and storage costs.

• UPX � is the most popular executable packer. UPX typically reduces the file size of
programs and DLLs by around 50%-70%. It is open-source, actively maintained,
and offer fast decompression.

• MPRESS � is an alternative to UPX. The tool is based on the LZMA compression
algorithm and could provide a better compression ratio. On the other hand, it is
less popular than UPX and no more maintained.

38/38

https://upx.github.io/
https://www.autohotkey.com/mpress/mpress_web.htm

	Binary Size Introduction
	Compiler and Linker Techniques
	Optimization Flags
	Debugging and Runtime Information Flags
	Symbol Visibility
	Exceptions Flags
	Linker Flags
	Link-Time Optimization (LTO)
	CMake Support

	Coding Aspects
	Function Inlining
	Function Visibility
	Templates
	Static Storage Duration
	Linkage
	Polymorphic classes
	Exceptions
	Header Inclusion

	Binary Size Tools
	nm and objdump
	Bloaty
	Executable Packer

