Modern C++

Programming

27. SOFTWARE DEsicN 1T [DRAFT]

DESIGN PATTERNS AND IDIOMS

Federico Busato
2026-01-06

Table of Contents

C++ ldioms

m Rule of Zero
m Rule of Three

m Rule of Five

Design Pattern
m Singleton
m Pointer to IMPLementation (PIMPL)
m Curiously Recurring Template Pattern

m Template Virtual Functions

1/15

C++ Idioms

Rule of Zero

The Rule of Zero is a rule of thumb for C+-+

Utilize the value semantics of existing types to avoid having to implement custom

copy and move operations

Note: many classes (such as std classes) manage resources themselves and should not
implement copy/move constructor and assignment operator

class X {
public:
X(...); // constructor
// NO need to define copy/move semantic
private:
std: :vector<int> v; // instead raw allocation
std::unique_ptr<int> p; // instead rTaw allocation

2/15
i // see smart pointer /

Rule of Three

The Rule of Three is a rule of thumb for C++(03)

If your class needs any of

= a copy constructor X(const X&)
= an assignment operator X& operator=(const X&)

= or a destructor ~X()

defined explicitly, then it is likely to need all three of them

Some resources cannot or should not be copied. In this case, they should be declared
as deleted

X(const X&) = delete

X& operator=(const X&) = delete

3/15

Rule of Five

The Rule of Five is a rule of thumb for C+-+11

If your class needs any of
= a copy constructor X(const X&)
= a move constructor X(X&&)
= an assignment operator X& operator=(const X&)
= an assignment operator X& operator=(X&&)

= or a destructor ~X()

defined explicitly, then it is likely to need all five of them

4/15

Design Pattern

Singleton

Singleton is a software design pattern that restricts the instantiation of a class to one
and only one object (a common application is for Iogging)

class Singleton {
public:
static Singleton& get_instance() { // note "static”
static Singleton instance { ..init.. } ;

return instance; // destroyed at the end of the program
} // initiliazed at first use
Singleton(const Singleton&) = delete;

void operator=(const Singleton&) = delete;
void £() {}

private:
T _data;
Singleton(..args..) { ... } // used in the initialization
} 5/15

Pointer to IMPLementation (PIMPL) - Compilation Firewalls

Pointer to IMPLementation (PIMPL) idiom allows decoupling the interface from
the implementation in a clear way

header.hpp
class A {
public:
AQO;
~AQ);
void £();
private:
class Impl; // forward declaration
Impl* ptr; // opaque pointer
};

NOTE: The class does not expose internal data members or methods

6/15

PIMPL - Implementation

source.cpp (Impl actual implementation)

class A::Impl { // could be a class with a complex logic
public:

void intermal f() {

..do something..

}
private:

int _datail;

float _data2;
};

A::AQ) : ptr{new Impl()} {}
A::~AQ { delete ptr; }
void A::f() { ptr->internal f(); }

7/15

PIMPL - Advantages, Disadvantages

Advantages:

= ABI stability
= Hide private data members and methods

= Reduce compile time and dependencies

Disadvantages:

= Manual resource management
- Impl* ptr can be replaced by unique_ptr<impl> ptr in C4++11

= Performance: pointer indirection + dynamic memory
- dynamic memory could be avoided by using a reserved space in the interface e.g.
uint8_t data[1024]

8/15

PIMPL - Implementation Alternatives

What parts of the class should go into the Impl object?

» Put all private and protected members into Impl :
Error prone. Inheritance is hard for opaque objects

= Put all private members (but not functions) into Impl :
Good. Do we need to expose all functions?

= Put everything into Impl, and write the public class itself as only the public
interface, each implemented as a simple forwarding function:
Good

https://herbsutter.com/gotw/_100/ 9/15

https://herbsutter.com/gotw/_100/

Curiously Recurring Template Pattern 1/3

The Curiously Recurring Template Pattern (CRTP) is an idiom in which a class
X derives from a class template instantiation using X itself as template argument

A common application is static polymorphism

template <class T>
struct Base {
void my_method() {
static_cast<T*>(this)->my_method_impl();

i

class Derived : public Base<Derived> {
// void my_method() is inherited
void my_method_impl() { ... } // private method
i
10/15

Curiously Recurring Template Pattern

#include <iostream>
template <typename T>
struct Writer {
void write(const char* str) {
static_cast<const T*>(this)->write_impl(str);

g
class CerrWriter : public Writer<CerrWriter> {
void write_impl(const char* str) { std::cerr << str; }
175
class CoutWriter : public Writer<CoutWriter> {
void write_impl(const char* str) { std::cout << str; }
g
CoutWriter x;
CerrWriter y;
x.write("abc");

y.write("abc"); 11/15

Curiously Recurring Template Pattern

template <typename T>
void f(Writer<T>& writer) {
writer.write("abc);

CoutWriter x;
CerrWriter y;
f(x);
£(y);

12/15

http://www.vishalchovatiya.com/crtp-c-examples/

Template Virtual Function

Virtual functions cannot have template arguments, but they can be emulated by
using the following pattern

class Base {

public:
template<typename T>
void method(T t) {

v_method (t); // call the actual implementation
}
protected:
virtual void v_method(int t) = 0; // v_method %s walid only

virtual void v_method(double t) = 0; // for "int" and "double"

i

13/15

Template Virtual Function

Actual implementations for derived class A and B

class AImpl : public Base {
protected:
template<typename T>
void t_method(T t) { // template "method()" implementation for A
std::cout << "A " << t << std::endl;

g

class BImpl : public Base {
protected:
template<typename T>
void t_method(T t) { // template "method()" implementation for B
std::cout << "B " << t << std::endl;

15 14/15

Template Virtual Function

template<class Impl> int main(int argc, char* argv[]) {
class DerivedWrapper : public Impl { A a;
private: B b;
void v_method(int t) override { Base* base = nullptr;
Impl::t_method(t);
} base = &a;
void v_method(double t) override { base->method (1) ; // print "A 1"
Impl::t_method(t); base->method(2.0); // print "A 2.0"
} // call the base method
rg base = &b;
base->method(1); // print "B 1"
using A = DerivedWrapper<AImpl>; base->method(2.0); // print "B 2.0"
using B = DerivedWrapper<BImpl>; }

method () calls v_method() (pure virtual method of Base)

v_method() calls t_method() (actual implementation)
15/15

	C++ Idioms
	Rule of Zero
	Rule of Three
	Rule of Five

	Design Pattern
	Singleton
	Pointer to IMPLementation (PIMPL)
	Curiously Recurring Template Pattern
	Template Virtual Functions

