
Modern C++
Programming
27. Software Design II [DRAFT]

Design Patterns and Idioms

Federico Busato
2026-01-06

Table of Contents

1 C++ Idioms
Rule of Zero

Rule of Three

Rule of Five

2 Design Pattern
Singleton

Pointer to IMPLementation (PIMPL)

Curiously Recurring Template Pattern

Template Virtual Functions

1/15

C++ Idioms

Rule of Zero

The Rule of Zero is a rule of thumb for C++

Utilize the value semantics of existing types to avoid having to implement custom
copy and move operations

Note: many classes (such as std classes) manage resources themselves and should not
implement copy/move constructor and assignment operator
class X {
public:

X(...); // constructor
// NO need to define copy/move semantic

private:
std::vector<int> v; // instead raw allocation
std::unique_ptr<int> p; // instead raw allocation

}; // see smart pointer
2/15

Rule of Three

The Rule of Three is a rule of thumb for C++(03)

If your class needs any of
• a copy constructor X(const X&)

• an assignment operator X& operator=(const X&)

• or a destructor ∼X()

defined explicitly, then it is likely to need all three of them

Some resources cannot or should not be copied. In this case, they should be declared
as deleted
X(const X&) = delete
X& operator=(const X&) = delete

3/15

Rule of Five

The Rule of Five is a rule of thumb for C++11

If your class needs any of
• a copy constructor X(const X&)

• a move constructor X(X&&)

• an assignment operator X& operator=(const X&)

• an assignment operator X& operator=(X&&)

• or a destructor ∼X()

defined explicitly, then it is likely to need all five of them

4/15

Design Pattern

Singleton

Singleton is a software design pattern that restricts the instantiation of a class to one
and only one object (a common application is for logging)
class Singleton {
public:

static Singleton& get_instance() { // note "static"
static Singleton instance { ..init.. } ;
return instance; // destroyed at the end of the program

} // initiliazed at first use

Singleton(const Singleton&) = delete;
void operator=(const Singleton&) = delete;

void f() {}

private:
T _data;
Singleton(..args..) { ... } // used in the initialization

} 5/15

Pointer to IMPLementation (PIMPL) - Compilation Firewalls

Pointer to IMPLementation (PIMPL) idiom allows decoupling the interface from
the implementation in a clear way

header.hpp

class A {
public:

A();
∼A();
void f();

private:
class Impl; // forward declaration
Impl* ptr; // opaque pointer

};

NOTE: The class does not expose internal data members or methods
6/15

PIMPL - Implementation

source.cpp (Impl actual implementation)
class A::Impl { // could be a class with a complex logic
public:

void internal_f() {
..do something..

}
private:

int _data1;
float _data2;

};

A::A() : ptr{new Impl()} {}
A::∼A() { delete ptr; }
void A::f() { ptr->internal_f(); }

7/15

PIMPL - Advantages, Disadvantages

Advantages:

• ABI stability
• Hide private data members and methods
• Reduce compile time and dependencies

Disadvantages:

• Manual resource management
- Impl* ptr can be replaced by unique_ptr<impl> ptr in C++11

• Performance: pointer indirection + dynamic memory
- dynamic memory could be avoided by using a reserved space in the interface e.g.

uint8_t data[1024]

8/15

PIMPL - Implementation Alternatives

What parts of the class should go into the Impl object?

• Put all private and protected members into Impl :
Error prone. Inheritance is hard for opaque objects

• Put all private members (but not functions) into Impl :
Good. Do we need to expose all functions?

• Put everything into Impl , and write the public class itself as only the public
interface, each implemented as a simple forwarding function:
Good

https://herbsutter.com/gotw/_100/ 9/15

https://herbsutter.com/gotw/_100/

Curiously Recurring Template Pattern 1/3

The Curiously Recurring Template Pattern (CRTP) is an idiom in which a class
X derives from a class template instantiation using X itself as template argument

A common application is static polymorphism

template <class T>
struct Base {

void my_method() {
static_cast<T*>(this)->my_method_impl();

}
};

class Derived : public Base<Derived> {
// void my_method() is inherited

void my_method_impl() { ... } // private method
};

10/15

Curiously Recurring Template Pattern 2/3

include <iostream>
template <typename T>
struct Writer {

void write(const char* str) {
static_cast<const T*>(this)->write_impl(str);

}
};
class CerrWriter : public Writer<CerrWriter> {

void write_impl(const char* str) { std::cerr << str; }
};
class CoutWriter : public Writer<CoutWriter> {

void write_impl(const char* str) { std::cout << str; }
};
CoutWriter x;
CerrWriter y;
x.write("abc");
y.write("abc"); 11/15

Curiously Recurring Template Pattern 3/3

template <typename T>
void f(Writer<T>& writer) {

writer.write("abc);
}

CoutWriter x;
CerrWriter y;
f(x);
f(y);

CRTP C++ Examples

12/15

http://www.vishalchovatiya.com/crtp-c-examples/

Template Virtual Function 1/3

Virtual functions cannot have template arguments, but they can be emulated by
using the following pattern

class Base {
public:

template<typename T>
void method(T t) {

v_method(t); // call the actual implementation
}

protected:
virtual void v_method(int t) = 0; // v_method is valid only
virtual void v_method(double t) = 0; // for "int" and "double"

};

13/15

Template Virtual Function 2/3

Actual implementations for derived class A and B

class AImpl : public Base {
protected:

template<typename T>
void t_method(T t) { // template "method()" implementation for A

std::cout << "A " << t << std::endl;
}

};

class BImpl : public Base {
protected:

template<typename T>
void t_method(T t) { // template "method()" implementation for B

std::cout << "B " << t << std::endl;
}

}; 14/15

Template Virtual Function 3/3

template<class Impl>
class DerivedWrapper : public Impl {
private:

void v_method(int t) override {
Impl::t_method(t);

}
void v_method(double t) override {

Impl::t_method(t);
} // call the base method

};

using A = DerivedWrapper<AImpl>;
using B = DerivedWrapper<BImpl>;

int main(int argc, char* argv[]) {
A a;
B b;
Base* base = nullptr;

base = &a;
base->method(1); // print "A 1"
base->method(2.0); // print "A 2.0"

base = &b;
base->method(1); // print "B 1"
base->method(2.0); // print "B 2.0"

}

method() calls v_method() (pure virtual method of Base)
v_method() calls t_method() (actual implementation)

15/15

	C++ Idioms
	Rule of Zero
	Rule of Three
	Rule of Five

	Design Pattern
	Singleton
	Pointer to IMPLementation (PIMPL)
	Curiously Recurring Template Pattern
	Template Virtual Functions

