Modern C++

Programming

26. SOFTWARE DESIGN I [DRAFT]

Basic CONCEPTS

Federico Busato
2026-01-06



Table of Contents

Books and References

Basic Concepts
m Abstraction, Interface, and Module

m Class Invariant

1/41



Table of Contents

Software Design Principles
m Separation of Concern
m Low Coupling, High Cohesion

m Encapsulation and Information Hiding

Design by Contract
m Problem Decomposition

m Code reuse

A Software Complexity
m Software Entropy

m Technical Debt
2/41



Table of Contents

H The SOLID Design Principles

@ Class Design
m The Class Interface Principle
m Member Functions vs. Free Functions

m Namespace Functions vs. Class static Methods
BLAS GEMM Case Study

H Owning Objects and Views

3/41



Table of Contents

B Value vs. Reference Semantic

i Global Variables

4/41



Books and
References



Clean Code Clean Architecture

A Handbook of Agile Software Craftsmanship

——

Clean Code: A Handbook of Agile Clean Architecture
Software Craftsmanship Robert C. Martin, 2017
Robert C. Martin, 2008

5/41



Large-Scale C++

Volume [

Large-Scale C++ Volume I: Process and
Architecture
J. Lakos, 2021

OREILLY

C++ Software

Design Principles \
and Patterns for "
High-Quality Software

Klaus Iglberger

C++4 Software Design
K. Iglberger, 2022

6/41



Code
Simplicity

O'REILLY* Max Keai-Alexancer
Code Simplicity
M. Kanat-Alexander, 2012

A Philosophy of Software
Design (2nd)
J. Ousterhout, 2021

OREILLY
Software
Engineering at

Google

Lessons Learned o
from Programming SRS
Over Time 2

& Curated by Titds Winters,
Tom Manshreck & Hyrum Wright

Software Engineering at
Google: Lessons Learned from
Programming over Time
T. Winters, 2020

(download 1link) 7/41


https://abseil.io/resources/swe-book

Basic Concepts



Abstraction, Interface, Module, and Class Invariant

An abstraction is the process of generalizing relevant information and behavior
(semantics) from concrete details

An interface is a communication point that allows iterations between users and the
system. It aims to standardize and simplify the use of programs

A module is a software component that provides a specific functionality. Common
examples are classes, files, and libraries

“In modular programming, each module provides an abstraction in form
of its interface”
— John Ousterhout, A Philosophy of Software Design

8/41



“Most modules have more users than developers, so it is better for the
developers to suffer than the users... it is more important for a module to
have a simple interface than a simple implementation”

— John Qusterhout, A Philosophy of Software Design

“The key to designing abstractions is to understand what is important,
and to look for designs that minimize the amount of information that is
important”
— John Ousterhout, A Philosophy of Software Design

9/41



Class Invariant

A class invariant (or type invariant) is a property of an object which remains
unchanged after operations or transformations. In other words, a set of conditions that
hold throughout its life. A class invariant constrains the object state and describes its
behavior

10/41



Software Design
Principles



Separation of Concern 1/2

“Separation of concern” suggests to organize software in modules, each of which

address a separate “concern” or functionality

Benefits of a modular design includes

= Decrease cognitive load. Small consistent parts are easier to understand than the whole
system in its entirety

= Help code maintainability. Fewer or no dependencies allow to focus on smaller pieces of
code, isolate potential bugs, and minimize the impact of changes

= Independent development

Modular design can be achieved both with vertical and horizontal organization, i.e.
layers of abstractions or functionalities at the same level

11/41



Separation of Concern

“The most fundamental problem in computer science is problem decom-
position: how to take a complex problem and divide it up into pieces that can
be solved independently”
— John Ousterhout, A Philosophy of Software Design

“We want to design components that are self-contained: independent, and

with a single, well-defined purpose”
— Andy Hunt, The Pragmatic Programmer

12/41



Low Coupling, High Cohesion

Cohesion refers to the degree to which the elements inside a module belong together.

In other words, the code that changes together, stays together.
See also the Single Responsibility Principle

Coupling refers to the degree of interdependence between software modules. In other
words, how a modification in one module affects changes in other modules

The Low Coupling, High Cohesion principle suggests to minimize dependencies and
keep together code that is part of the same functionality

13/41



Encapsulation and Information Hiding

Encapsulation refers to grouping together related data and methods that operate on
the data. It allows to present a consistent interface that is independent of its internal
implementation

Encapsulation is usually associated with the concept of information hiding that

prevents

= Exposing implementation details
= Violating class invariant maintained by the methods

It also provides freedom for the internal implementations

Encapsulation and information hiding are common paradigms to achieve software

modularity 14/41



Problem Decomposition

“Generic programming depends on the decomposition of programs into
components which may be developed separately and combined arbitrarily, sub-
ject only to well-defined interfaces”

— James C. Dehnert and Alexander Stepanov
Fundamentals of Generic Programming @

15/41


http://stepanovpapers.com/DeSt98.pdf

Code reuse

“Code reuse is the Holy Grail of Software Engineering"

— Douglas Crockford, Developer of the JavaScript language

16/41



Software Complexity



Technical Debt

“Technical debt is most often caused not so much be developers taking
shortcuts, but rather by management who pushes velocity over quality, features

over simplicity”
— Grady Booch, UML/Design Pattern

17/41



&

Andrej Karpathy

The if-then-else monster. Bloated functions that take dozens of kwargs.
When you read the code you can't even tell what runs because the cross-
product of all the configurations is beyond human comprehension. Majority
of the paths are deprecated, unsupported, or unadvisable.

18/41



Technical Debt

“Simplicity is the ultimate sophistication”

19/41



The SOLID Design
Principles




Class Design



The Class Interface Principle

The Interface Principle
For a class X, all functions, including free functions, that both

= “mention” X, and
= are “supplied with” X

are logically part of X, because they form part of the interface of X

If you put a class into a namespace, be sure to put all helper functions and operators
into the same namespace too

Using namespaces effectively

What’s In a Class? - The Interface Principle
20/41


https://biowpn.github.io/bioweapon/2024/06/05/using-namespaces-effectively.html
http://gotw.ca/publications/mill02.htm

Why Prefer Non-Member Functions

Encapsulation: Non-member functions guarantee to preserve the class invariant as
they can only call public methods, protecting the class state by definition.

Non-member functions helps to keep the class smaller and simpler — easier to
maintain and safer

Member functions induce coupling forcing the dependency from the this pointer.

Member functions can be split or organized in several other functions, worsening the
problem. Such methods are forced to perform actions that are only specific to such
class. On the contrary, non-member function favor generic code and can be potentially

reused across the program

21/41



Why Prefer Non-Member Functions

Cohesion/Single Responsibility Principle Member functions can perform actions

that are not strictly required by the class, bloating its semantics

Open-Close Principle Non-member functions improve the flexibility and extensibility
of classes by adding functionalities without altering the original class code and behavior

22/41



Member Functions vs. Free Functions

“If you're writing a function that can be implemented as either a member
or as a non-friend non-member, you should prefer to implement it as a non-
member function. That decision increases class encapsulation. When you think

encapsulation, you should think non-member functions”
— Scott Meyers, Effective C++

= https://workat.tech/machine-coding/tutorial/

design-good-functions-classes-clean-code-86h68awn9c7q
= Prefer nonmember, nonfriends?
= Monoliths "Unstrung",
= How Non-Member Functions Improve Encapsulation

= C++ Core Guidelines - C.4: Make a function a member only if it needs direct

access to the representation of a class
= Functions Want To Be Free, David Stone, CppNowlb
= Free your functions!, Klaus Iglberger, Meeting C++ 2017 23/41


https://workat.tech/machine-coding/tutorial/design-good-functions-classes-clean-code-86h68awn9c7q
https://workat.tech/machine-coding/tutorial/design-good-functions-classes-clean-code-86h68awn9c7q
https://www.foonathan.net/2017/06/member-vs-free/
http://www.gotw.ca/gotw/084.htm
https://embeddedartistry.com/fieldatlas/how-non-member-functions-improve-encapsulation/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c4-make-a-function-a-member-only-if-it-needs-direct-access-to-the-representation-of-a-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c4-make-a-function-a-member-only-if-it-needs-direct-access-to-the-representation-of-a-class
https://www.youtube.com/watch?v=_lVlC0xzXDc
https://www.youtube.com/watch?v=nWJHhtmWYcY

Member Functions

Functions that must be member (C++ standard):
= Constructors, destructor, e.g. AQ), ~AQ
= Assignment operators, e.g. operator=(const A&)
= Subscript operators, operator[] ()
= Arrow operators, operator->()
= Conversion operators, operator B()
= Function call operator, operator ()

= Virtual functions, virtual f()

24/41



Member Functions

Functions strongly suggested being member:

= Unary operators because they don't interact with other entities
- Member access operators: dereferencing *a , address-of &a
- Increment, decrement operators: a++ -a

= Any method that preserves
- const correctness, e.g. pointer access
- object initialization state, e.g. a variable that cannot be changed externally after
initialization (invariant)

Functions suggested being member:

= |n general, compound operators are expressed by updating private data
members operator+=(T, T) , operator|=(T, T), etc.

25/41



Non-Member Functions

Functions that must be non-member (C++ standard):

= Stream extraction and insertion «, »

Functions that are strongly suggested being non-member-

= Binary operators to maintain symmetry, see also “Implicit conversion and
overloading”
operator+(T, T) , operator|(T, T), etc.

» Template functions within a class template
Otherwise, it requires an additional template keyword when calling the function
(see dependent typename) — verbose, error-prone

Effective C++ item 24: Declare Non-member Functions When Type Conversions Should

Apply to All Parameters 26/41


https://blog.ycshao.com/2017/10/16/effective-c-item-24-declare-non-member-functions-when-type-conversions-should-apply-to-all-parameters/
https://blog.ycshao.com/2017/10/16/effective-c-item-24-declare-non-member-functions-when-type-conversions-should-apply-to-all-parameters/

Member Functions vs. Free Functions - Summary

More in general, member functions should be used only to preserve the invariant
properties of a class and cannot be efficiency implemented in terms of other

public methods
All other functions are suggested to be free-functions

Some examples: std::begin()/std::end() C+4+14, std::size() C++17

27/41



Namespace Functions vs. Class static Methods

Namespace functions:

= Namespace can be extended anywhere (without control)
= Namespace specifier can be avoided with the keyword using

Class + static methods:

= Can interact only with static data members
= struct/class cannot be extended outside their declarations

— static methods should define operations strictly related to an object state
(statefull)

— otherwise namespace should be preferred (stateless)
28/41



BLAS GEMM Case
Study




BLAS GEMM

GEneralized Matrix-Matrix product API provided by Basic Linear Algebra Subroutine
standard is one of the most used function in scientific computing and artifical

intelligence
The API is defined in C as follow: C = aop(A) x op(B) + 5C

ErrorEnum sgemm(int m, int n, int k,
OperationEnum opA,
OperationEnum opB,
float alpha,
float* a,
int 1lda,
float* Db,
int 1db,
float beta,
float* c,
int 1dc) ; 29/41



BLAS GEMM - Comprehension Problems

= m, n, k describe the shapes of A, B, C in a non-intuitive way. Except
domain-expert, users prefer providing the number of rows and columns as matrix
properties, not GEMM problem properties

= Privatization of the return channel for providing errors

= Errors expressed with enumerators. Need additional API to get a description of
the error meaning

= Domain-specific cryptic name. e.g. zgemm : generalized matrix-matrix
multiplication with double-precision complex type

= The data type on which the function operates is encoded in the name
itself zgemm — any new combination of data types requires a new name.

30/41



BLAS GEMM - Flexibility Problems 1/3

A, B, C matrices could have different types

The compute type, namely the type of intermediate operations, could be different
from the matrices. This is also known as mixed-precision computation

Batched computation, namely having multiple input/output matrices, is not
supported

The API is state-less — preprocessing steps for optimization or additional
properties (e.g. different algorithms) cannot be expressed

Matrix sizes can be greater than int (23! — 1), specially on distributed systems

Even if we perform computations with relative small matrices, the strides, e.g.
row * 1lda could be larger than int (23! —1)
31/41



BLAS GEMM - Flexibility Problems

alpha/beta could have a different type from matrix types

alpha/beta are typically pointers on accelerators (e.g. GPU) to allow
asynchronous computation

The underline memory layout is implicit (column-major). Row-major and other
layouts are not supported

C is both input and output. It is more flexible to decouple C and add another
parameter for the output D

Doesn't have an execution policy which describes where (host, device) and how
(sequential, parallel, vectorized, etc.)

32/41



BLAS GEMM - Flexibility Problems

= Doesn't have a memory resource which provides a mechanism to manage internal
memory

= Memory alignment is known only at run-time

= It is not possible to optimize the execution with compile-time matrix sizes

Most of all these points have been addressed by the std::linalg @ proposal

33/41


https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1673r13.html

Owning Objects and
Views




Objects vs. View

An object is a representation of a concrete entity as a value in memory

Resource-owning object

Resource-owning object refers to RAIl paradigm which ties resources to object
lifetime

example: std::vector, std: :string

A view acts as a non-owning reference and does not manage the storage that it refers to.
Lifetime management is up to the user

example: std::span, std::mdspan, std::string view

34/41



Objects vs. View

= lack ownership

= short-lived

= generally appear only in function parameters
= generally cannot be stored in data structures

= generally cannot be returned safely from functions (no ownership semantics)

35/41



Objects vs. View

#include <string>

#include <string_view>
std: :string £() { return "abc"; }
void g(std::string_view sv) {}

std: :string_view x = £(); // memory leak
g(f0); // memory leak

36/41
Regular, Revisited, Victor Ciura, CppCon23


https://github.com/CppCon/CppCon2023/blob/main/Presentations/Regular_Revisited_Victor_Ciura_CppCon_2023.pdf

Value vs. Reference
Semantic




Reference Semantic

Technical Debt: engineering cost: more coupled, more rigid, fragile (multiple
references)

Spooky action: different references see an implicitly shared object. Modification to a
reference affects the other ones

37/41



Reference Semantic 2/3

Incidental algorithms: emerges from a composition of locally defined behaviors and
with no explicit encoding in the program. References are connection between dynamic

objects

Visibility broken invariant: a modification to a reference can have a chain of actions
that reflects to the original object, breaking the visibility of an action

Race conditions: spooky action between different threads

Values - Safety, Regularity, Independence, and the Future of

Programming, Dave Abrahams, CppCon22
38/41


https://github.com/CppCon/CppCon2022/blob/main/Presentations/CPPCon-Values.pdf
https://github.com/CppCon/CppCon2022/blob/main/Presentations/CPPCon-Values.pdf

Reference Semantic

Surprise mutation: invisible coupling introduced by involuntary dependencies

void offset(int& x, const int& delta) { x += delta;}
int a = 3;
offset(a, a); // z=6, delta=6

offset(a, a); // z=12, delta=12

Unsafe operations mutation: A safe operation cannot cause undefined behavior

int a = 3;
int b& = a;
a = b++;

see also, strict aliasing violation

Property Models: From Incidental Algorithms to Reusable Components, Jarvi et al,

39/41
GPCE'08


https://sean-parent.stlab.cc/papers/2008-10-gpce/p89-jarvi.pdf
https://sean-parent.stlab.cc/papers/2008-10-gpce/p89-jarvi.pdf

Value Semantic

Regularity: x = x; x ==y —» y == x; x == copy(X); x =y <= x = copy(x)

regular data type properties: copying, equality, hashing, comparison, assignment,

serialization, differentiation
composition of value type is a value type
Independence: local and thread-safe
value semantic in C++
= pass-by-value gives callee an independent value

= a return value is independent in the caller

= a rvalue is independent

40/41



Global Variables



Global Variables

The Problems with Global Variables

41/41


https://embeddedartistry.com/fieldatlas/the-problems-with-global-variables/

	Books and References
	Basic Concepts
	Abstraction, Interface, and Module
	Class Invariant

	Software Design Principles
	Separation of Concern
	Low Coupling, High Cohesion
	Encapsulation and Information Hiding
	Design by Contract
	Problem Decomposition
	Code reuse

	Software Complexity
	Software Entropy
	Technical Debt

	The SOLID Design Principles
	Class Design
	The Class Interface Principle
	Member Functions vs. Free Functions
	Namespace Functions vs. Class static Methods

	BLAS GEMM Case Study
	Owning Objects and Views
	Value vs. Reference Semantic
	Global Variables

