Modern C++

Programming

24. PERFORMANCE OPTIMIZATION 11
CoDE OPTIMIZATION

Federico Busato
2026-01-06

Table of Contents

1/0 Operations
m printf
m Memory Mapped 1/0
m Speed Up Raw Data Loading

Memory Optimizations
m Heap Memory
m Stack Memory
m constexpr vs. static constexpr
m Cache Utilization
m Memory Alignment

m Memory Prefetch 103

Table of Contents

Arithmetic Types
m Data Types
m Arithmetic Operations
m Conversion
m Floating-Point
m Compiler Intrinsic Functions
m Value in a Range

m Lookup Table

2/93

Table of Contents

A Control Flow

m Branches

m Branch Hints - [[1ikely]] / [[unlikely]]

Signed/Unsigned Integers

m Loops

m Loop Hoisting

m Loop Unrolling

m Assertions

m Compiler Hints - [[assume]]/std: :unreachable()

m Recursion
3/93

Table of Contents

H Functions

Function Call Cost

Argument Passing
m Function Inlining

Pure Functions

m Constant Functions

m Pointers Aliasing
[@ Object-Oriented Programming

Std Library and Other Language Aspects

4/93

/O Operations

I/0 Operations are orders of magnitude slower than
memory accesses

5/93

In general, input/output operations are one of the most expensive

» Use endl for ostream only when it is strictly necessary (prefer \n)

Disable synchronization with printf/scanf :

std::ios_base::sync_with_stdio(false)

Disable IO flushing when mixing istream/ostream calls:

<istream_obj>.tie(nullptr);

Increase 10 buffer size:

file.rdbuf () ->pubsetbuf (buffer_var, buffer_size);

6/93

I/O Streams - Example

#1include <iostream>

int main() {

std: :ifstream fin;

A e e
std: :ios_base: :sync_with_stdio(false); // sync disable
fin.tie(nullptr); // flush disable

// buffer increase
const int BUFFER_SIZE = 1024 * 1024; // 1 MB
char buffer [BUFFER_SIZE];
fin.rdbuf () ->pubsetbuf (buffer, BUFFER_SIZE);
/) —mmmmm T

fin.open(filename); // Note: open() after optimizations

// I0 operations

fin.close(); 7/93

» printf is faster than ostream (see speed test link)

= A printf call with a simple format string ending with \n is converted to a

puts() call

printf ("Hello World\n");
printf ("%s\n", string);

= No optimization if the string is not ending with \n or one or more % are
detected in the format string

8/93

www.ciselant.de/projects/gcc_printf/gcc_printf.html

https://github.com/fmtlib/fmt#speed-tests
www.ciselant.de/projects/gcc_printf/gcc_printf.html

Memory Mapped 1/0

A memory-mapped file is a segment of virtual memory that has been assigned a
direct byte-for-byte correlation with some portion of a file

Benefits:
= Orders of magnitude faster than system calls
= Input can be “cached” in RAM memory (page/file cache)
= A file requires disk access only when a new page boundary is crossed
= Memory-mapping may bypass the page/swap file completely

= Load and store raw data (no parsing/conversion)

9/93

Memory Mapped 1/0O - Example

#if !defined(__linuz__)
#error It works only on linux

#endif

#include <fentl.h> //: :open
#include <sys/mman.h> //: :mmap
#include <sys/stat.h> //::open
#include <sys/types.h> //::open
#include <unistd.h> //::lseek

// usage: ./ezec <file> <byte_size> <mode>
int main(int argc, char* argv[]) {
size_t file_size = std::stoll(argv([2]);
auto is_read = std::string(argv[3]) == "READ";
int fd = is_read 7 ::open(argv[i], O_RDONLY)
::open(argv[1], O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
if (fd == -1)
ERROR(": :open") // try to get the last byte
if (::1lseek(fd, static_cast<off_t>(file_size - 1), SEEK_SET) == -1)
ERROR("::1seek")
if (!is_read && ::write(fd, "", 1) != 1) // try to write
. 10/93
ERROR("::write")

Memory Mapped 1/0O Example

auto mm_mode = (is_read) 7 PROT_READ : PROT_WRITE;

// Open Memory Mapped file
auto mmap_ptr = static_cast<char*>(
: :mmap (nullptr, file_size, mm_mode, MAP_SHARED, fd, 0));

if (mmap_ptr == MAP_FAILED)
ERROR(": :mmap") ;

// Advise sequential access

if (::madvise(mmap_ptr, file_size, MADV_SEQUENTIAL) == -1)
ERROR(": :madvise");

// MemoryMapped Operations

// read from/write to "mmap_ptr" as a mormal array: mmap_ptr[i]

// Close Memory Mapped file

if (::munmap(mmap_ptr, file_size) == -1)
ERROR (" : :munmap") ;

if (::close(fd) == -1)

ERROR("::close"); 11/93

Low-Level Parsing

Consider using optimized (low-level) numeric conversion routines:
template<int N, unsigned MUL, int INDEX = 0>
struct fastStringTolIntStr;

inline unsigned fastStringToUnsigned(const char* str, int length) {
switch(length) {
case 10: return fastStringToIntStr<10, 1000000000>: :aux(str);
case 9: return fastStringToIntStr< 9, 100000000>::aux(str);

case 8: return fastStringToIntStr< 8, 10000000>::aux(str);
case 7: return fastStringToIntStr< 7, 1000000>::aux(str);
case 6: return fastStringToIntStr< 6, 100000>::aux(str);
case 5: return fastStringToIntStr< 5, 10000>::aux(str);
case 4: return fastStringToIntStr< 4, 1000>::aux(str);
case 3: return fastStringToIntStr< 3, 100>::aux(str);

case 2: return fastStringToIntStr< 2, 10>::aux(str);

case 1: return fastStringToIntStr< 1, 1>::aux(str);

default: return 0;

} 12/93

Low-Level Parsing

template<int N, unsigned MUL, int INDEX>
struct fastStringToIntStr {
static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0O') * MUL +
fastStringToIntStr<N - 1, MUL / 10, INDEX + 1>::aux(str);

g
template<unsigned MUL, int INDEX>
struct fastStringToIntStr<1i, MUL, INDEX> {

static inline unsigned aux(const char* str) {
return static_cast<unsigned>(str[INDEX] - '0');

13

13/93
Faster parsing: lemire.me/blog/tag/simd-swar-parsing

https://lemire.me/blog/tag/simd-swar-parsing/

Speed Up Raw Data Loading

= Hard disk is orders of magnitude slower than RAM
= Parsing is faster than data reading
= Parsing can be avoided by using binary storage and mmap

= Decreasing the number of hard disk accesses improves the performance —

compression

LZ4 is lossless compression algorithm providing extremely fast decompression up to
35% of memcpy and good compression ratio
github.com/1z4/1z4

Another alternative is Facebook zstd
github.com/facebook/zstd 14/93

https://github.com/lz4/lz4
https://github.com/facebook/zstd

Speed Up Raw Data Loading 2/2

Performance comparison of different methods for a file of 4.8 GB of integers. They are
explicit values in a text file in the case of ifstream and memory mapped, while binary
values for LZ4

Load Method Exec. Time Speedup
ifstream + parsing 102 667 ms 1.0x
memory mapped + parsing (first run) 30 235 ms 3.4x
memory mapped + parsing (second run) 22 509 ms 4.5x
memory mapped + 1z4 (first run) 3914 ms 26.2x
memory mapped + 1z4 (second run) 1261 ms 81.4x

NOTE: the size of the Lz4 compressed file is 1,8 GB 15/93

Memory
Optimizations

Heap Memory

= Dynamic heap allocation is expensive: implementation dependent and interact

with the operating system

= Many small heap allocations are more expensive than one large memory allocation
The default page size on Linux is 4 KB. For smaller/multiple sizes, C++ uses a

sub-allocator

» Allocations within the page size is faster than larger allocations (sub-allocator)

16/93

Stack Memory

» Stack memory is faster than heap memory. The stack memory provides high
locality, it is small (cache fit), and its size is known at compile-time.

= static stack allocations produce better code because it avoids filling the stack
each time the function is reached.

17/93

constexpr vs. static constexpr

constexpr and static constexpr variables could produce very different code.

= Stack-local constexpr variable can be slightly faster than static constexpr for
sizes less than 136-144 bytes .

= Larger data, such as greater than ~2KB, copying into the stack becomes very expensive,
making static constexpr much faster.

= static constexpr is faster with lower optimization options (-00, -01).
= clang and msvc are generally emits identical code in both cases.

= constexpr variable with dynamic indexing produces very inefficient code with GCC.

//constezpr int arrayl] = {1,2,3,4,5,6,7,8,9F; // bad performance with GCC
{1,2,3,4,5,6,7,8,9};

static constexpr int arrayl[]

return array[index];

18/93
C++ Weekly - Ep 315 - constexpr vs static constexpr /

https://www.youtube.com/watch?v=IDQ0ng8RIqs

Cache Utilization

Maximize cache utilization:

= Maximize spatial and temporal locality (see next examples)
= Prefer small data types

= For basic set query and insertion:
o Prefer std::vector<bool> over a dynamic array of bool
o Prefer std::bitset over std::vector<bool> if the data size is known in
advance or bounded. Fixed-size array of bool should be always replaced by

std::bitset
o Remember that common std algorithms could not be optimized for these containers,

e.g. std::count_if , std::find

= Prefer stack data structures instead of heap data structures, e.g. std::vector

vs. static_vector @ 19/93

https://github.com/volt-software/Ichor/blob/dev/include/ichor/stl/StaticVector.h

Spatial Locality Example

A, B, C matrices of size N x N

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
int sum = 0;
for (int k = 0; k < N; k++)
C=AxB sum += A[i][k] * BIk][j1; // row X column
C[il[j] = sum;

17
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
int sum = 0;
for (int k = 0; k < N; k++)
= A x BT sum += A[i1[(k] * B(j1[k]; // row x row
C[il[j] = sum;

Q
|

20/93

Spatial Locality Example

Benchmark:
N 64 128 256 512 1024
A *x B <1ms 5 ms 29 ms 141 ms 1,030 ms
A *x BT < 1ms 2 ms 6 ms 48 ms 385 ms
Speedup / 2.5x 4.8x 2.9x 2.7x

21/93

Temporal-Locality Example

Speeding up a random-access function
for (dnt i = 0; i < N; i++) // Vi for (int K = 0; K < N; K += CACHE) { // V2
out_array[i] = in_arraylhash(i)]; for (int i = 0; i < N; i++) {
auto x = hash(i);
if (x >= K && x < K + CACHE)

out_array[i] = in_array[x];

}

V1: 436 ms, V2: 336 ms — 1.3x speedup (temporal locality improvement)
.. but it needs a careful evaluation of CACHE , and it can even decrease the performance for
other sizes

pre-sorted hash(i) : 135 ms — 3.2x speedup (spatial locality improvement)

lemire.me/blog/2019/04/27 22/93

https://lemire.me/blog/2019/04/27/speeding-up-a-random-access-function/

Memory Alignment

Memory alignment refers to placing data in memory at addresses that conform to
certain boundaries, typically powers of two (e.g., 1, 2, 4, 8, 16 bytes, etc.)

Note: For multidimensional data, alignment only means that the start address of the data is

aligned, not that all start offsets for all dimensions are aligned., e.g. for a 2D matrix, if
row[0] [0] is aligned doesn’t imply that row[1] [0] has the same property. Also the strides

between rows need to be multiple of the alignment

Data alignment is classified in:

= Internal alignment for struct/class layout optimization — reducing memory
footprint, optimizing memory bandwidth, and minimizing cache-line misses

= External alignment across several elements of the same type — minimizing

cache-line misses, vectorization (SIMD instructions)
23/93

Internal Structure Alignment

struct A2 {

struct Al {
char x1;
double yi;
char x2;
double y2;
char x3;
double y3;
char x4 ;
double y4;
char x5;

}

(1) We are wasting 40% of memory for (A1)

// offset 0

// offset 8!! (not 1)
// offset 16

// offset 24

// offset 32

// offset 40

// offset 48

// offset 56

// offset 64 (65 bytes)

}

char
char
char
char
char
double
double
double
double

x1;
x2;
x3;
x4 ;
x5;
yi;
y2;
y3;
y4;

// internal alignment

// offset
// offset
// offset
// offset
// offset
// offset
// offset
// offset
// offset

32 (40 bytes)

(2) Considering an array of structures (AoS) and a cache line of 64 bytes (x64

processors), every access to Al involves two cache line operations (~2x slower)

24/93

External Structure Alignment 1/3

In addiction to internal layout problems, even the structure A2 introduces overhead if
organized in an array. Loads lead to one or two cache line operations depending on the
alignment at a specific index, e.g.

index 0 — one cache line load

index 1 — two cache line loads

It is possible to fix the structure alignment in two ways:

= Memory padding refers to manually introducing extra bytes at the end of the
data structure to enforce memory alignment.

e.g. add a char array of size 24 to the structure A2

= Align keyword or attribute allows specifying the alignment requirement of a

type or an object (next slide)
25/93

External Structure Alignment

= Explicit alignment/padding for variable / struct declaration — affects
sizeof (T)

C++11 : alignas(N)

GCC/Clang : __attribute__((aligned(N)))

MSVC : __declspec(align(N))

= Explicit alignment for pointers

C++20 : std::assume_aligned<N>(ptr) (<memory>)

C++17 : aligned new or std::aligned_alloc(align, size)

GCC/Clang : __builtin_assume_aligned(ptr, N)

26/93

External Structure Alignment

struct alignas(16) S1 { // C++11

int x, y;
};
struct __attribute__((aligned(16))) S2 { // compiler-specific attribute
int x, y;
ks
constexpr auto DefaultAlilgn = __STDCPP_DEFAULT_NEW_ALIGNMENT__;
SHESE // 16B alignment
alignas(16) int var([3]; // 16B alignment
auto ptrl = new S1[10]; // Warning! no aligment guarantee
auto ptr2 = new int[100]; // alignment: maz (4B, DefaultAlilgn)
auto ptr3 = std::aligned_alloc(8, 4); // C++17, alignment: maxz (8B, DefaultAlilgn)
auto ptr4 = __builtin_assume_aligned(ptr2, 16); // compiler-specific attribute
auto ptr5 = std::assume_aligned<16>(ptr2); // C++20

auto ptr = new (sizeof(int), std::align_val_t{8}); // C++17, maxz (8B, DefaultAlilgn)
::operator delete (ptr, std::align_val_t{8}); 27/93

Memory Prefetch

__builtin_prefetch is used to minimize cache-miss latency by moving data into a
cache before it is accessed. It can be used not only for improving spatial locality, but
also temporal locality
for (int i = 0; i < size; i++) {
auto data = arrayl[i];
__builtin_prefetch(array + i + 1, 0, 1); // 2nd argument, 'O' means read-only
// 3th argument, '1' means
// temporal locality=1, default=3

// do some computation on 'data', e.g. CRC
}

Alternatively, -fprefetch-loop-arrays can be used to emit prefetching
instructions

The pros and cons of explicit software prefetching 2Jes

https://johnnysswlab.com/the-pros-and-cons-of-explicit-software-prefetching/

Multi- Threading and Caches

The CPU /threads affinity controls how a process is mapped and executed over
multiple cores (including sockets). It affects the process performance due to
core-to-core communication and cache line invalidation overhead

Maximizing threads “clustering” on a single core can potentially lead to higher cache
hits rate and faster communication. On the other hand, if the threads work
independently/almost independently, namely they show high locality on their working
set, mapping them to different cores can improve the performance

C++11 threads, affinity and hyper-threading 29/93

https://eli.thegreenplace.net/2016/c11-threads-affinity-and-hyperthreading/

Arithmetic Types

Hardware Notes

= |nstruction throughput greatly depends on processor model and characteristics,
e.g., there is no hardware support for integer division on GPUs. This operation is

translated to 100 instructions for 64-bit operands
= Modern processors provide separated units for floating-point computation (FPU)

= Addition, subtraction, and bitwise operations are computed by the ALU, and they
have very similar throughput

= In modern processors, multiplication and addition are computed by the same
hardware component for decreasing circuit area — multiplication and addition can
be fused in a single operation fma (floating-point) and mad (integer)

30/93
uops.info: Latency, Throughput, and Port Usage Information

https://uops.info/table.html

Data Types

= 32-bit integral vs. floating-point: in general, integral types are faster, but it

depends on the processor characteristics

= 32-bit types are faster than 64-bit types

= 64-bit integral types are slightly slower than 32-bit integral types. Modern processors
widely support native 64-bit instructions for most operations, otherwise they require
multiple operations

= Single precision floating-points are up to three times faster than double precision
floating-points

= Small integral types are slower than 32-bit integer, but they require less
memory — cache/memory efficiency
31/93

Arithmetic Operations

= Arithmetic increment/decrement x++ / x-— has the same performance of
x+=1/x =1

= Arithmetic compound operators (a2 *= b) has the same performance of
assignment + operation (a = a * b) *

= Prefer prefix increment/decrement (++var) instead of the postfix operator
(var++) *

* the compiler automatically applies such optimization whenever possible. This is not ensured for

32/93
object types

Arithmetic Operations

= Keep near constant values/variables — the compiler can merge their values.

Floating-point values requires more attention due to non-associativity

= Some operations on unsigned types are faster than on signed types because
they don't have to deal with negative numbers, eg. x / 2 — x » 1

= Some operations on signed types are faster than on unsigned types because
they can exploit undefined behavior, see next slide

= Prefer logic operations || to bitwise operations | to take advantage of
short-circuiting 33/93

https://stackoverflow.com/questions/71039947/is-ifa-b-always-faster-than-ifa-b

Arithmetic Operations

bool mainGuT(uint32_t il, uwint32_t i2, // if il, i2 are int32_t, the code

uint8_t *block) {
uint8_t cl, c2;

// 1
cl = block[il]l, c2 = block[i2];
if (c1l != c2) return (cl > c2);

114+, i2++;

/72

cl = block[il], c2 = block[i2];
if (c1 != c2) return (cl > c2);
il++, i2++;

// ... continue repeating the

L 74 code multiple times

// uses half of the instructions!!

// why? 4f i1, i2 are uint32_t the compiler
// must copy them into 32-bit registers to
// ensure wrap-around behavior before passing

// them to the subscript operator (size_t)

// On the other hand, int32_t overflow is
// undefined behavior and the compiler can

// assume it never happens

// the code is also optimal with size_t on 64-bit

// arch because block cannot be larger than it

Garbage In, Garbage Out: Arguing about Undefined Behavior with Nasal Daemons,

Chandler Carruth, CppCon 2016

34/93

https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o

Arithmetic Operations - Integer Multiplication

Integer multiplication requires double the number of bits of the operands

// 32-bit platforms
int f1(int x, int y) {

return x * y;

int64_t f2(int64_t x, int64_t y) {

return x * y;

int64_t £3(int x, int y) {
return x * static_cast<int64_t>(y);

// efficient, everything is 32-bit

// can overflow

// not efficient, the compiler emulated
// 64-bit operations with 32-bit

// instructions

// same for f2(int z, int64_t y)

// efficient!! the compiler knows that
// the inputs are 32-bit and the
// multiplication requires 64-bit,

// so mo emulation is needed 35/93

Arithmetic Operations - Power-of-Two Multiplication/Division/Modulo

= Prefer shift for power-of-two multiplications (a < b)) and divisions
(a > b) only for run-time values *

= Prefer bitwise aAND (a % b — a & (b - 1)) for power-of-two modulo

operations only for run-time values *

= Constant multiplication and division can be heavily optimized by the compiler,

even for non-trivial values

* the compiler automatically applies such optimizations if b is known at compile-time. Bitwise

operations make the code harder to read
Ideal divisors: when a division compiles down to just a multiplication 36/93

https://lemire.me/blog/2021/04/28/ideal-divisors-when-a-division-compiles-down-to-just-a-multiplication/?amp&__twitter_impression=true

Conversion

From To Cost
Signed Unsigned no cost, bit representation is the same
Unsigned Larger Unsigned no cost, register extended
Signed Larger Signed 1 clock-cycle, register + sign extended
4-16 clock-cycles
. . Signed — Floating-point is faster than
Integer Floating-point

Floating-point Integer

Unsigned — Floating-point (except AVX512
instruction set is enabled)

fast if SSE2, slow otherwise (50-100 clock-cycles)

Optimizing software in C++, Agner Fog

37/93

Floating-Point Division

Multiplication is much faster than division*

not optimized:
// "value" is floating-point (dynamic)
for (int i = 0; i < N; i++)

A[i] = B[i] / value;

optimized:
div = 1.0 / value; // div is floating-point
for (int i = 0; i < N; i++)

A[i] = B[i] * div;

* Multiplying by the inverse is not the same as the division

see lemire.me/blog/2019/03/12 38/93

https://lemire.me/blog/2019/03/12/multiplying-by-the-inverse-is-not-the-same-as-the-division/

Floating-Point FMA

Modern processors allow performing a * b + c in a single operation, called fused
multiply-add (std::fma in C++11). This implies better performance and accuracy

CPU processors perform computations with a larger register size than the original data
type (e.g. 48-bit for 32-bit floating-point) for performing this operation

Compiler behavior:
= GCC 9 and ICC 19 produce a single instruction for std::fma and for a * b + c with

-03 -march=native
= Clang 9 and MSVC 19.* produce a single instruction for std::fma but not for

a *xb+c

FMA: solve quadratic equation 30/93
FMA: extended precision addition and multiplication by constant

https://marc-b-reynolds.github.io/math/2020/01/10/Quadratic.html
https://marc-b-reynolds.github.io/math/2020/01/09/ConstAddMul.html

Compiler Intrinsic Functions 1/5

Compiler intrinsics are highly optimized functions directly provided by the compiler

instead of external libraries
Advantages:

= Directly mapped to hardware functionalities if available
= Inline expansion
= Do not inhibit high-level optimizations, and they are portable contrary to asm code

Drawbacks:

= Portability is limited to a specific compiler
= Some intrinsics do not work on all platforms
= The same instricics can be mapped to a non-optimal instruction sequence

depending on the compiler
40/93

Compiler Intrinsic Functions

Most compilers provide intrinsics bit-manipulation functions for SSE4.2 or ABM
(Advanced Bit Manipulation) instruction sets for Intel and AMD processors

GCC examples:
__builtin_popcount(x) count the number of one bits

__builtin_clz(x) (count leading zeros) counts the number of zero bits following the
most significant one bit

__builtin_ctz(x) (count trailing zeros) counts the number of zero bits preceding
the least significant one bit

__builtin_ffs(x) (find first set) index of the least significant one bit

41/93
gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

Compiler Intrinsic Functions

= Compute integer log2

inline unsigned log2(unsigned x) {
return 31 - __builtin_clz(x);

}

s Check if a number is a power of 2

inline bool is_power2(unsigned x) {
return __builtin_popcount(x) == 1;

}

= Bit search and clear

inline int bit_search_clear(unsigned x) {
int pos = __builtin_ffs(x); // range [0, 31]
b'd &= ~(lu << pos);
return pos;
} 42/93

Compiler Intrinsic Functions

Example of intrinsic portability issue:

__builtin_popcount () GCC produces __popcountdi2 instruction while Intel
Compiler (ICC) produces 13 instructions

_mm_popcnt_u32 GCC and ICC produce popcnt instruction, but it is available only
for processor with support for SSE4.2 instruction set

More advanced usage

= Compute CRC: _mm_crc32_u32
= AES cryptography: _mm256_aesenclast_epil28
= Hash function: _mm_sha256msgl_epu32

43/93

software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Compiler Intrinsic Functions

Using intrinsic instructions is extremely dangerous if the target processor does not

natively support such instructions

Example:

“If you run code that uses the intrinsic on hardware that doesn't support the lzcnt

instruction, the results are unpredictable” - MSVC

on the contrary, GNU and clang __builtin_* instructions are always well-defined.

The instruction is translated to a non-optimal operation sequence in the worst case

The instruction set support should be checked at run-time (e.g. with cpuid

function on MSVC), or, when available, by using compiler-time macro (e.g. __AVX__)

44/93

Automatic Compiler Function Transformation

std::abs can be recognized by the compiler and transformed to a hardware
instruction

In a similar way, C++20 provides a portable and efficient way to express bit operations
<bit>

rotate left : std::rotl

rotate right : std::rotr
count leading zero : std::countl_zero
count leading one : std::countl_one
count trailing zero : std::countr_zero
count trailing one : std::countr_one

population count : std::popcount

45/93
Why is the standard "abs" function faster than mine?

https://stackoverflow.com/questions/66023408/why-is-the-standard-abs-function-faster-than-mine

Value in a Range

Checking if a non-negative value x is within a range [A, B] can be optimized if
B > A (useful when the condition is repeated multiple times)

if (x >= A &% x <= B)

// STEP 1: subtract A

if (x - A>= A - A& x - A<=B - A)

/) —=>

if (x - A > 0 & x - A<=B - A) // B - A 4s precomputed

// STEP 2
// - convert "z - A >= 0" --> (unsigned) (z - A)
// - "B - A" is always positive

if ((unsigned) (x - A) <= (unsigned) (B - A))

46/93

Value in a Range Examples

Check if a value is an uppercase letter:
uint8_t x = ... uint8_t x = ...
if (x >= 'A' && x <= 'Z') — if (x - 'A' <= 'Z")

A more general case:
int x = ... int x = ...
if (x >= -10 && x <= 30) — if ((unsigned) (x + 10) <= 40)

The compiler applies this optimization only in some cases
(tested with GCC/Clang 9 -03) 47/93

Lookup Table

Lookup table (LUT) is a memoization technique which allows replacing runtime

computation with precomputed values

Example: a function that computes the logarithm base 10 of a number in the range [1-100]

template<int SIZE, typename Lambda>

constexpr std::array<float, SIZE> build(Lambda lambda) {
std: :array<float, SIZE> array{};
for (int i = 0; i < SIZE; i++)

array[i] = lambda(i);

return array;

}

float logl0(int value) {
constexpr auto lamba = [](int i) { return std::loglOf((float) i); I};
static constexpr auto table = build<100>(lambda) ;
return tablel[value];

48/93
Make your lookup table do more

https://commaok.xyz/post/lookup_tables/

Low-Level Optimizations

Collection of low-level implementations/optimization of common operations:

= Bit Twiddling Hacks
graphics.stanford.edu/~seander/bithacks.html

= The Aggregate Magic Algorithms
aggregate.org/MAGIC

= Hackers Delight Book
www.hackersdelight.org

49/93

https://graphics.stanford.edu/~seander/bithacks.html
http://aggregate.org/MAGIC/
http://www.hackersdelight.org/

Low-Level Information

The same instruction/operation may take different clock-cycles on different
architectures/CPU type

= Agner Fog - Instruction tables (latencies, throughputs)

www.agner.org/optimize/instruction_tables.pdf

= Latency, Throughput, and Port Usage Information
uops.info/table.html

50/93

http://www.agner.org/optimize/instruction_tables.pdf
http://uops.info/table.html

Control Flow

Control Flow

Computation is faster than decision

51/93

Branches

Pipelines are an essential element in modern processors. Some processors have up to

20 pipeline stages (14/16 typically)

The downside to long pipelines includes the danger of pipeline stalls that waste CPU
time, and the time it takes to reload the pipeline on conditional branch operations

(if, while, for)

52/93

Branches

= Prefer switch statements to multiple if
- If the compiler does not use a jump-table, the cases are evaluated in order of
appearance — the most frequent cases should be placed before

- Some compilers (e.g. clang) are able to translate a sequence of if into a switch
= In general, a branch has negligible effect on performance if it is not taken
= Not all control flow instructions (or branches) are translated into jump

instructions. If the code in the branch is small, the compiler could optimize it in a
conditional instruction, e.g. ccmovl

= Branch predictor: How many ‘if’s are too many?

= Is this a branch? 53/93

https://blog.cloudflare.com/branch-predictor/
https://bartwronski.com/2021/01/18/is-this-a-branch/

Hardware Features to Mitigate Branch Overhead

= Branch prediction: technique to guess which way a branch takes. It requires
hardware support, and it is generically based on dynamic history of code executing

= Branch predication: a conditional branch is substituted by a sequence of
instructions from both paths of the branch. Only the instructions associated to a
predicate (boolean value), that represents the direction of the branch, are actually

executed

int x = (condition) 7 A[i] : BI[il;
P = (condition) // P: predicate

P x = A[i];

'P x = B[i];

= Speculative execution: execute both sides of the conditional branch to better
utilize the computer resources and commit the results associated to the branch

taken
54/93

Branch Hints - [[1ikely]] / [[unlikely]]

C++20 [[1likely]] and [[unlikely]] provide a hint to the compiler to optimize
a conditional statement, such as while, for, if

for (i = 0; i < 300; i++) {
[[unlikely]] if (rand() < 10)
return false;

}

switch (value) {
[[1ikely]] case 'A': return 2;
[[unlikely]] case 'B': return 4;
}

55/93

Signed/Unsigned Integers

= Prefer signed integer for loop indexing. The compiler optimizes more
aggressively such loops because integer overflow is not defined. Unsigned loop
indexing generates complex intermediate expressions, especially for nested loops,

that the compiler could not solve

= Prefer 32-bit signed integer or 64-bit integer for any operation that is
translated to 64-bit. The most common is array indexing. The subscript
operator implicitly defines its parameter as size_t . Any indexing operation with
32-bit unsigned integer requires the compiler to enforce wrap-around behavior,
e.g. by moving the variable to a 32-bit register

unsigned v = ...;
// some operations on v

array[v];

56/93

= Prefer square brackets syntax [] over pointer arithmetic operations for array
access to facilitate compiler loop optimizations (e.g. polyhedral loop

transformations)

= Range-based loop could provide minor performance improvements for small loops

that iterate over a container !

= On the other hand, range-based loops and iterators could inhibit many
optimizations such as loop unrolling and vectorization

1 The Little Things: Everyday efficiencies 57/93

https://codingnest.com/the-little-things-everyday-efficiencies/amp/?__twitter_impression=true

Loop Hoisting

Loop Hoisting, also called loop-invariant code motion, consists of moving statements

or expressions outside the body of a loop without affecting the semantics of the

program
Base case: Better:
vV=2x+y;
for (int i = 0; i < 100; i++) for (int i = 0; i < 100; i++)
ali]l = x + y; ali]l = v;

Loop hoisting is also important in the evaluation of loop conditions

Base case: Better:

// "z" never changes int limit = f(x);

for (dint i = 0; i < £(x); i++) for (int i = 0; i < limit; i++)
alil = y; ali] = y;

In the worst case, f(x) is evaluated at every iteration (especially when it belongs to -

another translation unit)

Loop Unrolling 1/2

Loop unrolling (or unwinding) is a loop transformation technique which optimizes

the code by removing (or reducing) loop iterations

The optimization produces better code at the expense of binary size

Example:

for (int i = 0; i < N; i++)

sum += A[i];

can be rewritten as:

for (int i = 0; i < N; i += 8) {
sum += A[i];
sum += A[i + 1];
sum += A[i + 2];
sum += A[i + 3];

T 59/93
} // we suppose N is a multiple of 8

Loop Unrolling

Loop unrolling can make your code better/faster:
+ Improve instruction-level parallelism (ILP)
+ Allow vector (SIMD) instructions
+ Reduce control instructions and branches

Loop unrolling can make your code worse/slower:

- Increase compile-time/binary size
- Require more instruction decoding
- Use more memory and instruction cache

Unroll directive The Intel, IBM, Arm, Nvidia, clang, and GCC compilers provide the
preprocessing directive #pragma unroll (#pragma GCC unroll for GCC) to insert above
the loop to force loop unrolling. The compiler already applies the optimization in most cases

Why are unrolled loops faster? 60/93

https://lemire.me/blog/2019/04/12/why-are-unrolled-loops-faster/

Assertions

Some compilers (e.g. clang) use assertions for optimization purposes: most likely

code path, not possible values, etc. 3

Mehdi Amini
g rEph
And 1h gone easily tracking why an assert build of a microbenchmark
was 2x faster (!) than the release buil
Not CPU scaling this time, not CPU assignment, it was -
D GLIBCXX_ASSERTIONS !
Turns out that LLVM optimizer likes the added assertions and take
advantage of these...

#include

:State

Mehdi Amini @JokerEph - 1¢
Seems to me that a bunch of _builtin unreachable and __builtin expect
that are part of GLIBCXX_ASSERTIONS should be present in release mode.

Actually, they probably should be there **only** in release mode: these
aren't assertions, but optimizers hints...

m= Andrei Alexandrescu ws @incomputable - 6 apr 2020
Alrighty, so this makes my code 8% faster with g++. | am not kidding:
NDEBUG
assert
assert(c) if (c) {} else { __builtin unreachable(); }

Why don't they define it like that to start with?

61/93

Compiler Hints - [[assume]]/std: :unreachable()

C++-23 allows defining an assumption in the code that is always true

int x = ...;
[[assume(x > 0)1]1; // the compiler assume that 'z' is positive

int y = x / 2; // the operation is translated in a single shift as for

// the unsigned case

C+-+23 also provides std::unreachable() (<utility>) for marking unreachable

code
Compilers provide non-portable instructions for previous C++ standards: __builtin_assume ()
(clang), __builtin_unreachable() (gcc), __assume() (msvc)

Note: sometimes user-provided information leads to worse optimization, see
@llvm.assume blocks optimization @ and Refined Input, Degraded Output:

The Counterintuitive World of Compiler Behavior @ /
62/93

https://discourse.llvm.org/t/llvm-assume-blocks-optimization/71609/8
https://dl.acm.org/doi/pdf/10.1145/3656404
https://dl.acm.org/doi/pdf/10.1145/3656404

Recursion

Avoid run-time recursion (very expensive). Prefer jterative algorithms instead

Recursion cost: The program must store all variables (snapshot) at each recursion
iteration on the stack, and remove them when the control return to the caller instance

The tail recursion optimization avoids maintaining caller stack and pass the control to
the next iteration. The optimization is possible only if all computation can be executed
before the recursive call

63/93

Recursion

. =

: SECOND EDITION i

B

x| 260

eras
Besieea
Bustbacks i
by Hation
e e e
Btk DAty o 15100, 160 247
113 ‘puts library function 164, 247 g

qsort function 87,110,120
103 qgsort library function 253
e |

L 110
185 Nte characier, * 19, 37-38, 193
=i ?\ume Character, * 8,20, 38,194

s carriage return charecter 35 193
raise library function

Tand function 46
223 brary function 25
n 170

PROGRAMMING
LANGUAGE

* BRIAN W KERNIGHAN

2 = 0
class "m M
‘;mom\ L ‘s" 6. s
Telationa! °‘Z‘°ﬁn«tmn e #0083
removal of 9 jon 242

ncti
ium‘m =

Via Twitter - Jan Wi
ildeb
eboer oy

https://twitter.com/jwildeboer/status/1218865157864067077?s=09

Functions

Function Call Cost

Function call methods:

Direct Function address is known at compile-time
Indirect Function address is known only at run-time
Inline The function code is fused in the caller code (same translation unit or
Link-time-optimization)

Direct/Indirect function call cost:

= The caller pushes the arguments on the stack in reverse order
= Jump to function address

= The caller clears (pop) the stack

= The function pushes the return value on the stack

= Jump to the caller address 65/93

https://hbfs.wordpress.com/2008/12/30/the-true-cost-of-calls/

Argument Passing 1/4

The optimal way to pass and return arguments (by-value) to/from functions is in
registers. It also avoid the pointer aliasing performance issue. The following conditions
must be satisfied:

= The object is trivially copyable: No user-provided copy/move/default constructors,
destructor, and copy/move assignment operators, no virtual functions, apply recursively to

base classes and non-static data members

= Linux/Unix (SystemV x86-64 ABI): data types < 16 bytes (8B x 2), max 6
arguments

= Windows (x64 ABI): data types < 8 bytes, max 4 arguments

= when are structs/classes passed and returned in registers?
= System V ABI - X86-64 Calling Convention 66,/93
= x64 calling convention - Parameter Passing

https://stackoverflow.com/questions/42411819/c-on-x86-64-when-are-structs-classes-passed-and-returned-in-registers
https://wiki.osdev.org/System_V_ABI#x86-64
https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170#parameter-passing

Argument Passing - Active Objects

= |f the previous conditions are not satisfied, the object is passed by-reference. In
addition, objects that are not trivially-copyable could be expensive to pass

by-value (copied).
= Pass by-reference and by-pointer introduce one level of indirection
= Pass by-reference is more efficient than pass by-pointer because it facilitates

variable elimination by the compiler, and the function code does not require
checking for NULL pointer

67/93
Three reasons to pass std::string_view by value /

https://quuxplusone.github.io/blog/2021/11/09/pass-string-view-by-value/

Argument Passing - Active Objects

According to Rome, "A seasoned performance engineer was looking through Stro-
belight data and discovered that by filtering on a particular std: :vector function
call (using the symbolized file and line number) he could identify computationally ex-
pensive array copies that happen unintentionally with the ' auto " keyword in C++."

After finding one of these costly array copies in the path of one of Meta’s major
ad services, the engineer determined that the vector copy wasn't intentional. So he
added an " & " after the auto keyword to turn the copy into a reference, which
avoids unnecessary data duplication by pointing to the data rather than reproducing
it.

"It was a one-character commit, which, after it was shipped to production,
equated to an estimated 15,000 servers in capacity savings per year," said Rome.

Meta recently made a 1 character change to their codebase which saves the

equivalent of 15,000 servers in capacity per year & 68/93

https://x.com/DanielLockyer/status/1903042764566130911
https://x.com/DanielLockyer/status/1903042764566130911

Argument Passing - const Parameters

const modifier applied to values, pointers, references does not produce better code
in most cases, but it is useful for ensuring read-only accesses

In some cases, pass by-const is beneficial for performance because const member
function overloading could be cheaper than their counterparts

GoTW#81: Constant Optimization? 69/93

http://www.gotw.ca/gotw/081.htm

inline Function Declaration

inline specifier for optimization purposes is just a hint for the compiler that
increases the heuristic threshold for inlining, namely copying the function body

where it is called

inline void £() { ... }
= the compiler can ignore the hint

= Inlining can be very effective for performance because it can merge different
functions into one, allowing constant propagation, eliminating dead code, or

combining instructions

= inlined functions increase the binary size because they are expanded in-place for

every function call
70/93

inline Function Declaration

Compilers have different heuristics for function inlining

Number of lines (even comments: How new-lines affect the Linux kernel

performance @).
Number of assembly instructions.
Inlining depth (recursive).

-Winline warns when a function marked inline could not be substituted, and
gives the reason for the failure.

An Inline Function is As Fast As a Macro

Inlining Decisions in Visual Studio 71/93

https://nadav.amit.zone/linux/2018/10/10/newline.html
https://nadav.amit.zone/linux/2018/10/10/newline.html
https://gcc.gnu.org/onlinedocs/gcc/Inline.html
https://devblogs.microsoft.com/cppblog/inlining-decisions-in-visual-studio/

inline Function Declaration 3/3

Compiler extensions allow to manually force inline/non-inline functions with attributes.
Here C+-+17attributes are adopted:

GCC/Clang:

[[gnu::always_inline]] void £() { ... }
[[gnu::noinline]] void £() { ... }
MSVC:

[[msvc::forceinline]] wvoid £() { ... }
[[msvc: :noinline]] void £() { ... }

72/93

Inlining and Linkage

= A function with internal linkage is not visible outside the current translation

unit, allowing the compiler to perform aggressive inlining.

= On the other hand, external linkage does not prevent function inlining if the
function body is visible in a translation unit. However, function side effects or
internal state may influence the compiler’s decision.

= Functions with external linkage that are defined in a different translation unit

cannot be inlined. Link-time optimization (LTO) may enable function inlining
across translation units.

73/93

Symbol Visibility

All compilers, except MSVC, export all function symbols — the symbols can be used in
other translation units and may influence the compiler’s inlining decision.

Alternatives:

» Use static functions
= Use anonymous namespace (functions and classes)

= Use GNU extension (also clang) __attribute__((visibility("hidden")))

gce.gnu.org/wiki/Visibility 74/93

https://gcc.gnu.org/wiki/Visibility

Pure Functions

Pure functions have no side effect on its parameters and don’t modify global

variables.
Pure functions can access global variables. On the other hand, they can only call other

pure functions, cannot modify input pointers or references, and must have non- void
return type.

Main property: Referential transparency @ — Pure functions always returns the
same output for the same inputs, without affecting the program state.

Pure functions allow the following optimizations:

= Common Sub-expression Elimination: when the function is called multiple times
with the same arguments.

= Dead-Code Elimination: if the result value or subsequent operations are not used,
the function can be removed because it doesn’t modify the program state. 75/93

https://en.wikipedia.org/wiki/Referential_transparency

Pure Functions

double pow2(double x); // defined in another translation unit

double caller(double v) {
double x = pow2(v) + pow2(v); // generates 4 calls
double y = pow2(v) + pow2(v);
return x + y;

}

The compiler automatically recognizes pure functions when they are entirely visible in
a translation unit. Link-Time-Optimization can help to optimize them across
translation units. ASM statements prevent their detection.

Clang/GCC allow to explicitly marked pure function with the attribute
[[gnu: :purel] .

Pure functions in C++ 76/93

https://soroush.github.io/en/2020/08/06/pure-functions-in-cpp

Constant Functions

Constant Functions have no side effect on its parameters and don't refer global

variables. They are a stricter case of pure functions.

Constant functions allow further optimizations:

= Strong Common Sub-expression Elimination: this optimization can be applied
even for non-subsequent statements because modification of the global state don't
affect them.

= Loop optimizations: thanks to the above property, constant functions within a
loop can be reordered arbitrarily

Clang/GCC allow to explicitly marked constant function with the attribute
[[gnu: :const]] .

77/93
Implications of pure and constant functions /

https://lwn.net/Articles/285332/

Pointers Aliasing

Consider the following example:

// suppose f() is mot inline
void f(int* input, int size, int* output) {
for (int i = 0; i < size; i++)

output[i] = input[i];

= The compiler cannot unroll the loop (sequential execution, no ILP) because
output and input pointers can be aliased, e.g. output = input + 1

= The aliasing problem is even worse for more complex code and inhibits all kinds of
optimization including code re-ordering, vectorization, common sub-expression

elimination, etc.

78/93

Pointers Aliasing

Most compilers (included GCC/Clang/MSVC) provide restricted pointers
(__restrict) so that the programmer asserts that the pointers are not aliased
void f(int* __restrict input,

int size,

int* __restrict output) {

for (int i = 0; i < size; i++)

output[i] = input[il;

1

Potential benefits:

= [nstruction-level parallelism
= Less instructions executed
= Merge common sub-expressions

79/93

Pointers Aliasing

Benchmarking matrix multiplication

void matrix_mul_vi(const int* A,
const int* B,
int N,

void matrix_mul_v2(const int* __restrict A,
const int* __restrict B,

int N,

intx* __restrict C) {

Optimization -01 -02 -03
vl 1,030 ms 777 ms 777 ms
v2 513 ms 510 ms 761 ms
Speedup 2.0x 1.5x 1.02x

80/93

Pointers Aliasing

void foo(std::vector<double>& v, const double& coeff) {

for (auto& item :

}

VS.

v) item *= std::sinh(coeff);

void foo(std::vector<double>%& v, double coeff) {

for (auto& item :

v) item *= std::sinh(coeff);

30000

testByRef
25000 Wlcpu_time: 29179.559188434247

27 times slower than testByVal
20000
15000
10000
5000
0
testByRef testByVal

ratio (CPU time / Noop time)
Lower is faster

Argument Passing,

Core Guidelines and Aliasing

81/93

https://www.youtube.com/watch?v=uylFACqcWYI

Object-Oriented
Programming

Variable/Object Scope

Declare local variable in the innermost scope

= the compiler can more likely fit them into registers instead of stack

= it improves readability

Wrong;: Correct:
int i, x; for (int i = 0; i < N; i++) {
for (i = 0; i < N; i++) { int x = value * 5;
X = value * 5; sum += x;
sum += x; }
}

s C++17 allows local variable initialization in if and switch statements, while
C++4-20 introduces them for in range-based loops

82/93

Variable/Object Scope

Exception! Built-in type variables and passive structures should be placed in the
innermost loop, while objects with constructors should be placed outside loops

for (int i = 0; i < N; i++) { std: :string str("prefix_");
std::string str("prefix_"); for (int i = 0; i < N; i++) {
std::cout << str + valuelil; std::cout << str + valuel[i];
} // str call CTOR/DTOR N times }

83/93

Object Optimizations

= Prefer direct initialization and full object constructor instead of two-step
initialization (also for variables)

= Prefer move semantic instead of copy constructor. Mark copy constructor as
=delete (sometimes it is hard to see, e.g. implicit)

» Use static for all members that do not use instance member (avoid passing
this pointer)

= |f the object semantic is trivially copyable, ensure defaulted = default

default/copy constructors and assignment operators to enable vectorization
84/93

Object Dynamic Behavior Optimizations

= Virtual calls are slower than standard functions
- Virtual calls prevent any kind of optimizations as function lookup is at
runtime (Ioop transformation, vectorization, etc.)

- Virtual call overhead is up to 20%-50% for function that can be inlined
= Mark final all virtual functions that are not overridden

= Avoid dynamic operations, e.g. dynamic_cast

- The Hidden Performance Price of Virtual Functions

85/93
- Investigating the Performance Overhead of C++ Exceptions /

https://raw.githubusercontent.com/CppCon/CppCon2022/main/Presentations/CppCon-The-Hidden-Performance-Price-of-Virtual-Functions.pdf
https://pspdfkit.com/blog/2020/performance-overhead-of-exceptions-in-cpp/

Object Operation Optimizations

= Minimize multiple + operations between objects to avoid temporary storage

s Prefer x += obj , instead of x = x + obj — avoid object copy and temporary

storage

= Prefer ++obj / —obj (return &obj), instead of obj++, obj- (copy and return
old obj)

86/93

Object Implicit Conversion

struct A { // big object
int array[10000];

};
struct B {
int array[10000] ;
B() = default;
B(const A& a) { // user-defined constructor
std: :copy(a.array, a.array + 10000, array);
}
};
/ - - - - - - ———— - - —_———

void f(const B& b) {}

A a;

B b;

f(b); // no cost

f(a); // very costly!! implicit conversion 87/93

Std Library and
Other Language
Aspects

From C to C+4++

= Avoid old C library routines such as gsort, bsearch, etc. Prefer std::sort,
std: :binary_search instead

- std::sort is based on a hybrid sorting algorithm. Quick-sort / head-sort
(introsort), merge-sort / insertion, etc. depending on the std implementation

- Prefer std::find() for small array, std::lower_bound ,
std: :upper_bound , std::binary_search for large sorted array

88/93

Function Optimizations

» std::fill applies memset and std::copy applies memcpy if the
input/output are continuous in memory

= Use the same type for initialization in functions like std::accumulate() ,
std::fill

auto array = new int[size];

auto sum = std::accumulate(array, array + size, Ou);

// Ou != 0 — conversion at each step

std::fill(array, array + size, Ou);

// it is not translated into memset

89/93
The Hunt for the Fastest Zero

https://travisdowns.github.io/blog/2020/01/20/zero.html

Containers

= Use std container member functions (e.g. obj.find()) instead of external

ones (e.g. std::find()). Example: std::set O(log(n)) vs. O(n)

= Be aware of container properties, e.g. vector.push_back(v) , instead of
vector.insert(vector.begin(), value) — entire copy of all vector elements

= Set std::vector size during the object construction (or use the reserve()
method) if the number of elements to insert is known in advance — every implicit
resize is equivalent to a copy of all vector elements

= Consider unordered containers instead of the standard one, e.g. unordered_map
VS. map

= Prefer std::array instead of dynamic heap allocation 90,93

Critics to Standard Template Library (STL)

= Platform/Compiler-dependent implementation

= Execution order and results across platforms

= Debugging is hard

= Complex interaction with custom memory allocators
= Error handling based on exceptions is non-transparent
= Binary bloat

= Compile time (see C++ Compile Health Watchdog, and STL Explorer)

91/93
STL isn’t for *anyonex* /

https://artificial-mind.net/projects/compile-health/
https://s9w.github.io/stl_explorer/explorer.html
https://twitter.com/m_ninepoints/status/1497768472184430600

Exceptions affect both performance and memory resources:
= Exceptions make functions harder to inline, due to their side effect.

= Side effects also prevent or limit common optimizations, such as instruction
reordering and loop unrolling.

= Exceptions produce code bloat affecting code locality and decreasing cache hits.
Mitigation:

= Use noexcept decorator, especially for move constructor and assignment —

program is aborted if an error occurs.

= Some benchmarks report 5-7% performance improvement noexcept Can

(Sometimes) Help (or Hurt) Performance @

= Bitcoin: 97 less memory: make SaltedOutpointHasher noexcept z 92/93

https://16bpp.net/blog/post/noexcept-can-sometimes-help-or-hurt-performance/
https://16bpp.net/blog/post/noexcept-can-sometimes-help-or-hurt-performance/
https://github.com/bitcoin/bitcoin/pull/16957

Other Language Aspects

» Prefer lambda expression (or function object) instead of std::function
or function pointers

= Avoid dynamic operations: exceptions (and use noexcept), smart pointer

(e.g. std::unique_ptr)

93/93

	I/O Operations
	printf
	Memory Mapped I/O
	Speed Up Raw Data Loading

	Memory Optimizations
	Heap Memory
	Stack Memory
	constexpr vs. static constexpr
	Cache Utilization
	Memory Alignment
	Memory Prefetch

	Arithmetic Types
	Data Types
	Arithmetic Operations
	Conversion
	Floating-Point
	Compiler Intrinsic Functions
	Value in a Range
	Lookup Table

	Control Flow
	Branches
	Branch Hints - [[likely]] / [[unlikely]]
	Signed/Unsigned Integers
	Loops
	Loop Hoisting
	Loop Unrolling
	Assertions
	Compiler Hints - [[assume]]/std::unreachable()
	Recursion

	Functions
	Function Call Cost
	Argument Passing
	Function Inlining
	Pure Functions
	Constant Functions
	Pointers Aliasing

	Object-Oriented Programming
	Std Library and Other Language Aspects

