
Modern C++
Programming
23. Performance Optimization I

Basic Concepts

Federico Busato
2026-01-06



Table of Contents

1 Introduction
Moore’s Law

Moore’s Law Limitations

Reasons for Optimizing

1/66



Table of Contents

2 Basic Concepts
Asymptotic Complexity

Time-Memory Trade-off

Developing Cycle

Ahmdal’s Law

Throughput, Bandwidth, Latency

Performance Bounds

Arithmetic Intensity

2/66



Table of Contents

3 Basic Architecture Concepts
Instruction Throughput (IPC), In-Order, and Out-of-Order Execution

Instruction Pipelining

Instruction-Level Parallelism (ILP)

Little’s Law

Data-Level Parallelism (DLP) and Vector Instructions (SIMD)

Thread-Level Parallelism (TLP)

Single Instruction Multiple Threads (SIMT)

RISC, CISC Instruction Sets

3/66



Table of Contents

4 Memory Concepts
Memory Hierarchy Concepts

Memory Locality

Core-to-Core Latency and Thread Affinity

Memory Ordering Model

4/66



Introduction



Performance and Technological Progress

5/66



Performance and Technological Progress

6/66



Moore’s Law 1/2

“The number of transistors incorporated in a chip will approximately
double every 24 months.” (40% per year)

Gordon Moore, Intel co-founder

7/66



Moore’s Law 2/2

The Moore’s Law is not (yet) dead, but the same concept is not true for clock
frequency, single-thread performance, power consumption, and cost

8/66



Single-Thread Performance Trend

9/66



Moore’s Law Limitations 1/3

Higher performance over time is not merely dictated by the number of transistors.
Specific hardware improvements, software engineering, and algorithms play a crucial
rule in driving the computer performance.

10/66



Moore’s Law Limitations - Some Examples 2/3

Specialized Hardware
Reduced precision, matrix multiplication engine, and sparsity provided orders

of magnitude performance improvement for AI applications

Forget Moore’s Law. Algorithms drive technology forward
“Algorithmic improvements make more efficient use of existing resources and allow

computers to do a task faster, cheaper, or both. Think of how easy the smaller MP3
format made music storage and transfer. That compression was because of an algorithm.”

• There’s plenty of room at the Top: What will drive computer performance after
Moore’s law?

• Forget Moore’s Law
• Heeding Huang’s Law

11/66

https://www.science.org/doi/epdf/10.1126/science.aam9744
https://www.science.org/doi/epdf/10.1126/science.aam9744
https://stackoverflow.blog/2021/03/24/forget-moores-law-algorithms-drive-technology-forward/
https://blogs.nvidia.com/blog/2023/09/29/huangs-law-dally-hot-chips/


Moore’s Law Limitations - Some Examples 3/3

Poisson’s equation solver on a cube of size N = n3

Year Method Reference Storage Complexity

1947 GE (banded) Von Neumann & Goldstine n5 → n7

1950 Optimal SOR Reid n3 n4log n

1971 CG Young n3 n3.5log n

1984 MG Brandt n3 → n3

Tile Low-rank Methods and Applications, David Keyes

12/66

https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1002&context=mascsls


Reasons for Optimizing 1/2

• In the first decades, the computer performance was extremely limited. Low-level
optimizations were essential to fully exploit the hardware

• Modern systems provide much higher performance, but we cannot more rely on
hardware improvement on short-period

• Performance and efficiency add market value (fast program for a given task), e.g.
search, page loading, etc.

• Optimized code uses less resources, e.g. in a program that runs on a server for
months or years, a small reduction in the execution time/power consumption
translates in a big saving of power consumption

13/66



Reasons for Optimizing 2/2

Amazon PageSpeed Case Study
14/66

https://www.conductor.com/academy/page-speed-resources/faq/amazon-page-speed-study/


Software Optimization is Complex

from ”Speed is Found in the Minds of People“,
Andrei Alexandrescu, CppCon 2019 15/66



Optimization Books

Hacker’s Delight (2nd)
H. S. Warren, 2016

Optimized C++
K. Guntheroth, 2014

16/66



References

• Awesome C/C++ performance optimization resources, Bartlomiej Filipek

• Optimizing C++, wikibook

• Optimizing software in C++, Agner Fog

• Algorithmica: Algorithms for Modern Hardware

• What scientists must know about hardware to write fast code

Figure references
• A Look Back at Single-Threaded CPU Performance

• Herb Sutter, The Free Lunch Is Over

• Genomic Analysis at Scale: Mapping Irregular Computations to Advanced
Architectures

• microprocessor-trend-data

• What is Moore’s Law? 17/66

https://github.com/fenbf/AwesomePerfCpp
https://en.wikibooks.org/wiki/Optimizing_C%2B%2B
https://www.agner.org/optimize/optimizing_cpp.pdf
https://en.algorithmica.org/hpc/
https://biojulia.dev/post/hardware/
https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
http://www.gotw.ca/publications/concurrency-ddj.htm
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62341/
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62341/
https://github.com/karlrupp/microprocessor-trend-data
https://ourworldindata.org/moores-law


Basic Concepts



Asymptotic Complexity 1/2

The asymptotic analysis refers to estimate the execution time or memory usage as
function of the input size (the order of growing)

The asymptotic behavior is opposed to a low-level analysis of the code
(instruction/loop counting/weighting, cache accesses, etc.)

Drawbacks:

• The worst-case is not the average-case

• Asymptotic complexity does not consider small inputs (think to insertion sort)
• The hidden constant can be relevant in practice
• Asymptotic complexity does not consider instructions cost and hardware details

18/66



Asymptotic Complexity 2/2

Be aware that only real-world problems with a small asymptotic complexity or small
size can be solved in a “user” acceptable time

Three examples:

• Sorting : O (n log n), try to sort an array of some billion elements

• Diameter of a (sparse) graph: O
(
V 2)

, just for graphs with a few hundred
thousand vertices it becomes impractical without advanced techniques

• Matrix multiplication: O
(
N3)

, even for small sizes N (e.g. 8K, 16K), it requires
special accelerators (e.g. GPU, TPU, etc.) for achieving acceptable performance

19/66



Time-Memory Trade-off

The time-memory trade-off is a way of solving a problem or calculation in less time
by using more storage space (less often the opposite direction)

Examples:

• Memoization (e.g. used in dynamic programming): returning the cached result
when the same inputs occur again

• Hash table: number of entries vs. efficiency
• Lookup tables: precomputed data instead branches
• Uncompressed data: bitmap image vs. jpeg

20/66



Developing Cycle 1/3

“If you’re not writing a program, don’t use a programming language”
Leslie Lamport, Turing Award

“First solve the problem, then write the code”

“Inside every large program is an algorithm trying to get out”
Tony Hoare, Turing Award

“Premature optimization is the root of all evil”
Donald Knuth, Turing Award

“Code for correctness first, then optimize!”
21/66



Developing Cycle 2/3

22/66



Developing Cycle 3/3

• One of the most important phase of the optimization cycle is the
application profiling for finding regions of code that are critical for
performance (hotspot)
→ Expensive code region (absolute)
→ Code regions executed many times (cumulative)

• Most of the time, there is no the perfect algorithm for all cases (e.g.
insertion, merge, radix sort). Optimizing also refers in finding the correct
heuristics for different program inputs/platforms instead of modifying the
existing code

23/66



Ahmdal’s Law 1/3

Ahmdal’s Law
The Ahmdal’s law expresses the maximum improvement possible by improving a
particular part of a system

Observation: The performance of any system is constrained by the speed of the
slowest point

S : improvement factor expressed as a factor of P

24/66



Ahmdal’s Law 2/3

Overall Improvement = 1

(1 − P) + P
S

P \ S 25% 50% 75% 2x 3x 4x 5x 10x ∞

10% 1.02x 1.03x 1.04x 1.05x 1.07x 1.08x 1.09x 1.10x 1.11x
20% 1.04x 1.07x 1.09x 1.11x 1.15x 1.18x 1.19x 1.22x 1.25x
30% 1.06x 1.11x 1.15x 1.18x 1.25x 1.29x 1.31x 1.37x 1.49x
40% 1.09x 1.15x 1.20x 1.25x 1.36x 1.43x 1.47x 1.56x 1.67x
50% 1.11x 1.20x 1.27x 1.33x 1.50x 1.60x 1.66x 1.82x 2.00x
60% 1.37x 1.25x 1.35x 1.43x 1.67x 1.82x 1.92x 2.17x 2.50x
70% 1.16x 1.30x 1.43x 1.54x 1.88x 2.10x 2.27x 2.70x 3.33x
80% 1.19x 1.36x 1.52x 1.67x 2.14x 2.50x 2.78x 3.57x 5.00x
90% 1.22x 1.43x 1.63x 1.82x 2.50x 3.08x 3.57x 5.26x 10.00x 25/66



Ahmdal’s Law 3/3

note: s is the portion of the system that cannot be improved 26/66



Throughput, Bandwidth, Latency

The throughput is the rate at which operations are performed

Peak throughput:
(CPU speed in Hz) x (CPU instructions per cycle) x
(number of CPU cores) x (number of CPUs per node)
NOTE: modern processors have more than one computation unit

The memory bandwidth is the amount of data that can be loaded from or stored into
a particular memory space

Peak bandwidth:
(Frequency in Hz) x (Bus width in bit / 8) x (Pump rate, memory type multiplier)

The latency is the amount of time needed for an operation to complete
27/66



Performance Bounds 1/2

The performance of a program is bounded by one or more aspects of its computation.
This is also strictly related to the underlying hardware

• Memory-bound. The program spends its time primarily in performing memory
accesses. The performance is limited by the memory bandwidth (rarely
memory-bound also refers to the amount of memory available)

• Compute-bound (Math-bound). The program spends its time primarily in
computing arithmetic instructions. The performance is limited by the speed of the
CPU

28/66



Performance Bounds 2/2

• Latency-bound. The program spends its time primarily in waiting the data are
ready (instruction/memory dependencies). The performance is limited by the
latency of the CPU/memory

• I/O Bound. The program spends its time primarily in performing I/O operations
(network, user input, storage, etc.). The performance is limited by the speed of
the I/O subsystem

29/66



Arithmetic Intensity 1/6

Arithmetic Intensity
Arithmetic/Operational Intensity is the ratio of total operations to total data
movement (bytes or words)

The arithmetic intensity is a fundamental metric to understand the performance
limitations of a system, namely compute-bound or memory-bound

The roofline model uses the arithmetic intensity to visually assess the performance of
a system and the algorithms/implementations that execute on it

30/66



Arithmetic Intensity - Ideal Matrix Multiplication 2/6

The naive matrix multiplication algorithm requires N3 · 2 floating-point operations*
(multiplication + addition) and operates on

(
N2 · 4B

)
· 3 data

Considering an ideal system, where each matrix
entry is accessed only once, and float data
type

R = ops
bytes = 2N3

12N2 = N
6

which means that for every byte accessed, the
algorithm performs N

6 operations → compute-
bound

* What Is a Flop?
31/66

https://nhigham.com/2023/09/05/what-is-a-flop/


Arithmetic Intensity - Real Matrix Multiplication, Basic Algorithm 3/6

Assuming N a large value (N ∗ N ≫ cache size), the basic algorithm is equivalent to a
dot product for each entry of the output matrix. The algorithm performs 2N3

operations and involves N3 ∗ 4B data movement (excluding storing the results on C)

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

float sum = 0;
for (int k = 0; k < N; k++)

sum += A[i][k] * B[k][j]; // row-major order
C[i][j] = sum;

}
}

ops
bytes = 2N3

12N3 = 1
6 → memory-bound

32/66



Arithmetic Intensity - Real Matrix Multiplication, Blocked Algorithm 4/6

One of the main optimizations in matrix multiplication is to organize the computation
by partitioning the matrices into blocks (or tiles). The primary goal is to take
advantage of the memory hierarchy to improve data locality

While blocked matrix multiplication doesn’t change the number of operations, it
significantly reduces data movement out of main memory

33/66



Arithmetic Intensity - Real Matrix Multiplication, Blocked Algorithm 5/6

By selecting blocks of optimal size, we can reduce the data movement by a factor
proportional to the block size. The computation can be viewed as a sequence of dot
products, one for each block in the output matrix

Considering an optimal block size B to fully
exploit the caches

ops
bytes = 2N3

12
(

N
B

)3 = B3

6 → compute-bound

34/66



Arithmetic Intensity - Performance Numbers 6/6

N Operations Data Movement Ratio Exec. Time

512 268 · 106 3 MB 85 2 ms
1024 2 · 109 12 MB 170 21 ms
2048 17 · 109 50 MB 341 170 ms
4096 137 · 109 201 MB 682 1.3 s
8192 1 · 1012 806 MB 1365 11 s

16384 9 · 1012 3 GB 2730 90 s

A modern CPU performs 100 GFlops, and has about 50 GB/s memory bandwidth

35/66



Basic Architecture
Concepts



Instruction Throughput (IPC), In-Order, and Out-of-Order Execution

The processor throughput, namely the number of instructions that can be executed in
a unit of time, is measured in Instruction per Cycle (IPC).
It is worth noting that most instructions require multiple clock cycles (Cycles Per
Instruction, CPI). Therefore improving the IPC requires advanced hardware support

In-Order Execution (IOE) refers to the sequential processing of instructions in the
exact order they appear in the program

Out-of-Order Execution (OOE) refers to the execution of instructions based on the
availability of input data and execution units, rather than their original order in a
program executed in a unit of time

36/66



Instruction Pipeling 1/3

Out-of-order execution on a scalar processor (single instruction at a time) is
implemented through instruction pipeling which consists in dividing instructions into
stages performed by different processor units, allowing different parts of instructions to
be processed in parallel

Instruction pipeling breaks up the processing of instructions into several steps, allowing
the processor to avoid stalls that occur when the data needed to execute an instruction
is not immediately available. The processor avoid stalls by filling slots with other
instructions that are ready

37/66



Instruction Pipeling 2/3

Fetch: The processor retrieves an instruction from memory
Decode: Instruction interpretation and preparation for execution, determining

what operations it calls for
Execute: The processor carries out the instruction

Memory Access: Reading from or writing to memory (if needed)
Write-back: The results of the instruction execution are written back to the

processor’s registers or memory

38/66



Instruction Pipeling 3/3

Microarchitecture Pipeline
stages

Core 14
Bonnell 16
Sandy Bridge 14
Silvermont 14 to 17
Haswell 14
Skylake 14
Kabylake 14

The pipeline efficiency is affected by

• Instruction stalls, e.g. cache miss, an execution unit not available, etc.
• Bad speculation, branch misprediction

39/66



Instruction-Level Parallelism (ILP) 1/2

A superscalar processor is a type of microprocessor architecture that allows for the
execution of multiple instructions in parallel during a single clock cycle. This is
achieved by incorporating multiple execution units within the processor

The concept should not be confused with instruction pipelining, which decompose the
instruction processing in stages. Modern processors combine both techniques to
improve the IPC

Instruction-Level Parallelism (ILP) is a measure of how many instructions in a
program can be executed simultaneously by issuing independent instructions in
sequence.
ILP is achieved with out-of-order execution or with the SIMT programming model (see
next slides)

40/66



Instruction-Level Parallelism (ILP) 2/2

for (int i = 0; i < N; i++) // with no optimizations, the loop
C[i] = A[i] * B[i]; // is executed in sequence

can be rewritten as:

for (int i = 0; i < N; i += 4) { // four independent multiplications
C[i] = A[i] * B[i]; // per iteration
C[i + 1] = A[i + 1] * B[i + 1]; // A, B, C are not alias
C[i + 2] = A[i + 2] * B[i + 2];
C[i + 3] = A[i + 3] * B[i + 3];

}

41/66



Instruction-Level Parallelism and Little’s Law

The Little’s Law expresses the relation between latency and throughput. The
throughput of a system λ is equal to the number of elements in the system divided by
the average time spent (latency) W for each element in the system:

L = λW → λ = L
W

• L: average number of customers in a store
• λ: arrival rate (throughput)
• W : average time spent (latency)

42/66



Data-Level Parallelism (DLP) and Vector Instructions (SIMD)

Data-Level Parallelism (DLP) refers to the execution of the same operation on
multiple data in parallel

Vector processors or array processors provide SIMD (Single Instruction-Multiple Data)
or vector instructions for exploiting data-level parallelism

The popular vector instruction sets are:

MMX MultiMedia eXtension. 80-bit width (Intel, AMD)

SSE (SSE2, SSE3, SSE4) Streaming SIMD Extensions. 128-bit width (Intel, AMD)

AVX (AVX, AVX2, AVX-512) Advanced Vector Extensions. 512-bit width (Intel, AMD)

NEON Media Processing Engine. 128-bit width (ARM)

SVE (SVE, SVE2) Scalable Vector Extension. 128-2048 bit width (ARM)
43/66



Thread-Level Parallelism (TLP)

A thread is a single sequential execution flow within a program with its state
(instructions, data, PC, register state, and so on)

Thread-level parallelism (TLP) refers to the execution of separate computation
“thread” on different processing units (e.g. CPU cores)

44/66



Single Instruction Multiple Threads (SIMT)

An alternative approach to the classical data-level parallelism is Single Instruction
Multiple Threads (SIMT), where multiple threads execute the same instruction
simultaneously, with each thread operating on different data.

GPUs are successful examples of SIMT architectures.

SIMT can be thought of as an evolution of SIMD (Single Instruction Multiple Data).
SIMD requires that all data processed by the instruction be of the same type and
requires no dependencies or inter-thread communication. On the other hand, SIMT is
more flexible and does not have these restrictions. Each thread has access to its own
memory and can operate independently.

45/66



RISC, CISC Instruction Sets

The Instruction Set Architecture (ISA) is an abstract model of the CPU to
represent its behavior. It consists of addressing modes, instructions, data types,
registers, memory architecture, interrupt, etc.
It does not define how an instruction is processed

The microarchitecture (µarch) is the implementation of an ISA which includes
pipelines, caches, etc.

46/66



CISC

Complex Instruction Set Computer (CISC)

• Complex instructions for special tasks even if used infrequently
• Assembly instructions follow software. Little compiler effort for translating

high-level language into assembly
• Initially designed for saving cost of computer memory and disk storage (1960)
• High number of instructions with different size
• Instructions require complex micro-ops decoding (translation) for exploiting ILP
• Multiple low-level instructions per clock but with high latency

Hardware implications

• High number of transistors
• Extra logic for decoding. Heat dissipation
• Hard to scale 47/66



RISC

Reduced Instruction Set Computer (RISC)

• Simple instructions
• Small number of instructions with fixed size
• 1 clock per instruction
• Assembly instructions does not follow software
• No instruction decoding

Hardware implications

• High ILP, easy to schedule
• Small number of transistors
• Little power consumption
• Easy to scale

48/66



Instruction Set Comparison

x86 Instruction set
MOV AX, 15; AH = 0x00, AL = 0xFh
AAA; AH = 0x01, AL = 0x05
RET

ARM Instruction set
MOV R3, #0x10
AND R2, R0, #0xF
CMP R2, R3
IT LT
BLT elsebranch
ADD R2, #0x6
ADD R1, #0x1
elsebranch:
END

49/66



CISC vs. RISC

• Hardware market:
- RISC (ARM, IBM): Qualcomm Snapdragon, Amazon Graviton, Nvidia Grace,

Nintendo Switch, Fujitsu Fukaku, Apple M1, Apple Iphone/Ipod/Mac, Tesla
Full Self-Driving Chip, PowerPC

- CISC (Intel, AMD): all x86-64 processors

• Software market:
- RISC : Android, Linux, Apple OS, Windows
- CISC : Windows, Linux

• Power consumption:
- CISC : Intel i5 10th Generation: 64W
- RISC : Arm-based smartphone < 5W

50/66



ARM Quote

“Incidentally, the first ARM1 chips required so little power, when the
first one from the factory was plugged into the development system to
test it, the microprocessor immediately sprung to life by drawing current
from the IO interface – before its own power supply could be properly
connected.”

Happy birthday, ARM1. It is 35 years since Britain’s Acorn RISC Machine chip
sipped power for the first time 51/66

https://www.theregister.com/2020/04/27/arm_35_year_anniversary/
https://www.theregister.com/2020/04/27/arm_35_year_anniversary/


Memory Concepts



The Von Neumann Bottleneck

Access to memory dominates other costs in a processor

52/66



The Von Neumann Bottleneck

The efficiency of computer architectures is limited by the Memory Wall
problem, namely the memory is the slowest part of the system

Moving data to and from main memory consumes the vast majority of time and
energy of the system

53/66



Memory Hierarchy 1/5

54/66



Memory Hierarchy 2/5

Modern architectures rely on complex memory hierarchy (primary memory, caches,
registers, scratchpad memory, etc.). Each level has different characteristics and
constraints (size, latency, bandwidth, concurrent accesses, etc.)

1 byte of RAM (1946) IBM 5MB hard drive (1956)

twitter.com/MIT_CSAIL 55/66

https://twitter.com/MIT_CSAIL


Memory Hierarchy 3/5

Source:
“Accelerating Linear Algebra on Small Matrices from Batched BLAS to Large Scale Solvers",
ICL, University of Tennessee 56/66



Memory Hierarchy 4/5

Intel Alder Lake 12th-gen Core-i9-12900k (Q1’21) + DDR4-3733 example:

Hierarchy level Size Latency Latency
Ratio

Bandwidth Bandwidth
Ratio

L1 cache 192 KB 1 ns 1.0x 1,600 GB/s 1.0x

L2 cache 1.5 MB 3 ns 3x 1,200 GB/s 1.3x

L3 cache 12 MB 6 - 20 ns 6-20x 900 GB/s 1.7x

DRAM / 50 - 90 ns 50-90x 80 GB/s 20x

SDD Disk (swap) / 70µs 105x 2 GB/s 800x

HDD Disk (swap) / 10 ms 107x 2 GB/s 800x

• en.wikichip.org/wiki/WikiChip

• Memory Bandwidth Napkin Math
57/66

https://en.wikichip.org/wiki/WikiChip


Memory Hierarchy 5/5

“Thinking differently about memory accesses, a good start is to get rid of the
idea of O(1) memory access and replace it with O

√
N” - The Myth of RAM

Algorithmica: Memory Latency
58/66

https://www.ilikebigbits.com/2014_04_21_myth_of_ram_1.html
https://en.algorithmica.org/hpc/cpu-cache/latency/


Memory Hierarchy Concepts 1/4

A cache is a small and fast memory located close to the processor that stores
frequently used instructions and data. It is part of the processor package and takes 40
to 60 percent of the chip area

Characteristics and content:

Registers Program counter (PC), General purpose registers, Instruction Register
(IR), etc.

L1 Cache Instruction cache and data cache, private/exclusive per CPU core,
located on-chip

L2 Cache Private/exclusive per single CPU core or a cluster of cores, located
off-chip

L3 Cache Shared between all cores and located off-chip (e.g. motherboard), up to
128/256MB 59/66



Memory Hierarchy Concepts 2/4

60/66



Memory Hierarchy Concepts 3/4

A cache line or cache block is the unit of data transfer between the cache and main
memory, namely the memory is loaded at the granularity of a cache line. A cache line
can be further organized in banks or sectors
The typical size of the cache line is 64 bytes on x86-64 architectures (Intel, AMD),
while it is 128 bytes on Arm64

Cache access type:

Hot Closest-processor cached, L1

Warm L2 or L3 caches

Cold First load, cache empty

61/66



Memory Hierarchy Concepts 4/4

• A cache hit occurs when a requested data is successfully found in the cache
memory

• The cache hit rate is the number of cache hits divided by the number of memory
requests

• A cache miss occurs when a requested data is not found in the cache memory

• The miss penalty refers to the extra time required to load the data into cache
from the main memory when a cache miss occurs

• A page fault occurs when a requested data is in the process address space, but it
is not currently located in the main memory (swap/pagefile)

• Page thrashing occurs when page faults are frequent and the OS spends
significant time to swap data in and out the physical RAM 62/66



Memory Locality

• Spatial Locality refers to the use of data elements within
relatively close storage locations e.g. scan arrays in increasing order, matrices by
row. It involves mechanisms such as memory prefetching and access granularity
When spatial locality is low, many words in the cache line are not used

• Temporal Locality refers to the reuse of the same data within a relatively
small-time duration, and, as consequence, exploit lower levels of the memory
hierarchy (caches), e.g. multiple sparse accesses
Heavily used memory locations can be accessed more quickly than less heavily
used locations

63/66



Core-to-Core Latency

The slowing of Moore’s Law and the collapse of Dennard scaling necessitated the
hierarchical organization of caches and processors in the CPU. Today, CPUs organize
their cores into clusters, chiplets, and multi-sockets. As a result, how execution threads
are mapped to cores has a significant impact on the overall performance

Core-to-Core
Latency Heatmap:

64/66



Thread Affinity

The thread affinity refers to the binding of a thread to a specific execution unit. The
goal of thread affinity is improving the application performance by taking advantage of
cache locality and optimizing resource usage

Setting CPU affinity can be done programmatically, such as using the
pthread_setaffinity_np function for POSIX threads, or at OS level with the
taskset command and the sched_setaffinity system call on Linux

*Dennard Scaling: power is proportional to the area of the transistor
CPU Affinity: Because Even A Single Chip Is Nonuniform

65/66

https://www.jabperf.com/cpu-affinity-because-even-a-single-chip-is-nonuniform/


Memory Ordering Model

• Source code order: The order in which the memory operations are specified in
the source code, e.g. subscript, dereferencing

• Program order: The order in which the memory operations are specified at
assembly level. Compilers can reorder instructions as part of the optimization
process

• Execution order: The order in which the individual memory-reference
instructions are executed on a given CPU, e.g., out-of-order execution

• Perceived order: The order in which a CPU perceives its memory operations.
The perceived order can differ from the execution order due to caching,
interconnect, and memory-system optimizations

C++ Memory Model: Migrating from X86 to ARM
66/66

https://arangodb.com/2021/02/cpp-memory-model-migrating-from-x86-to-arm/

	Introduction
	Moore's Law
	Moore's Law Limitations
	Reasons for Optimizing

	Basic Concepts
	Asymptotic Complexity
	Time-Memory Trade-off
	Developing Cycle
	Ahmdal's Law
	Throughput, Bandwidth, Latency
	Performance Bounds
	Arithmetic Intensity

	Basic Architecture Concepts
	Instruction Throughput (IPC), In-Order, and Out-of-Order Execution
	Instruction Pipelining
	Instruction-Level Parallelism (ILP)
	Little's Law
	Data-Level Parallelism (DLP) and Vector Instructions (SIMD)
	Thread-Level Parallelism (TLP)
	Single Instruction Multiple Threads (SIMT)
	RISC, CISC Instruction Sets

	Memory Concepts
	Memory Hierarchy Concepts
	Memory Locality
	Core-to-Core Latency and Thread Affinity
	Memory Ordering Model


