
Modern C++
Programming

22. Advanced Topics II

Federico Busato
2026-01-06

Table of Contents

1 Undefined Behavior
Illegal Behavior

Platform Specific Behavior

Unspecified Behavior

Detecting Undefined Behavior

1/58

Table of Contents

2 Error Handing
Recoverable Error Handing

Return Code

C++ Exceptions

Defining Custom Exceptions

noexcept Keyword

Memory Allocation Issues

Return Code and Exception Summary

std::expected

Alternative Error Handling Approaches
2/58

Table of Contents

3 Smart pointers
std::unique_ptr

std::shared_ptr

std::weak_ptr

4 Concurrency
Thread Methods

Mutex

Atomic

Task-based parallelism

3/58

Undefined Behavior

Undefined Behavior Overview

Undefined behavior means that the semantic of certain operations is
• Unspecified behavior : outside the language/library specification, two or more choices
• Illegal : the compiler presumes that such operations never happen, e.g. integer overflow
• Implementation-defined behavior : depends on the compiler and/or platform (not portable)

Motivations behind undefined behavior:
• Compiler optimizations, e.g. signed overflow or NULL pointer dereferencing
• Simplify compile checks
• Unfeasible/expensive to check

• What Every C Programmer Should Know About Undefined Behavior, Chris Lattner
• What are all the common undefined behaviors that a C++ programmer should know

about?
• Enumerating Core Undefined Behavior
• C++ programmer’s guide to undefined behavior

4/58

http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://stackoverflow.com/questions/367633/what-are-all-the-common-undefined-behaviours-that-a-c-programmer-should-know-a
https://stackoverflow.com/questions/367633/what-are-all-the-common-undefined-behaviours-that-a-c-programmer-should-know-a
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
https://pvs-studio.com/en/blog/posts/cpp/1215/

Illegal Behavior 1/3

• const_cast applied to a const variables
const int var = 3;
const_cast<int&>(var) = 4;
... // use var

• Memory alignment
char* ptr = new char[512];
auto ptr2 = reinterpret_cast<uint64_t*>(ptr + 1);
ptr2[3]; // ptr2 is not aligned to 8 bytes (sizeof(uint64_t))

• Memory initialization
int var; // undefined value
auto var2 = new int; // undefined value

• Memory access-related: Out-of-bound access: the code could crash or not
depending on the platform/compiler 5/58

Illegal Behavior 2/3

• Strict aliasing
float x = 3;
auto y = reinterpret_cast<unsigned&>(x);
// x, y break the strict aliasing rule

• Lifetime issues
int* f() {

int tmp[10];
return tmp;

}
int* ptr = f();
ptr[0];

• One Definition Rule violation
- Different definitions of inline functions in distinct translation units

6/58

Illegal Behavior 3/3

• Missing return statement
int f(float x) {

int y = x * 2;
}

• Dangling reference
int n = 1;
const int& r = std::max(n-1, n+1); // dangling
// GCC 13 experimental -Wdangling-reference (enabled by -Wall)

Starting from C++26, it is disallowed to bind a returned reference to a temporary

• Illegal arithmetic and conversion operations
- Division by zero 0 / 0 , fp_value / 0.0
- Out-of-range floating-point to integer conversion

C++26: Disallow Binding a Returned Reference to a Temporary
7/58

https://www.sandordargo.com/blog/2025/06/11/cpp26-no-binding-to-returned-reference-to-temporary

Platform Specific Behavior

• Memory access-related: NULL pointer dereferencing : the 0x0 address is valid
in some platforms

• Endianness
union U {

unsigned x;
char y;

};

• Type definition
long x = 1ul << 32u; // different behavior depending on the OS

• Intrinsic functions

8/58

Unspecified Behavior 1/2

Legal operations but the C++ standard does not document the result → different
compilers/platforms can show different behavior

• Signed shift of negative values -2 ≪ x (before C++20), large-than-type shift
3u ≪ 32 , etc.

• Floating-point narrowing conversion to floating-point or integer types with
unrepresentable values double → float , float → int

• Arithmetic operation ordering f(i++, i++)

• Function evaluation ordering
auto x = f() + g(); // C++ doesn't ensure that f() is evaluated before g()

9/58

Unspecified Behavior 2/2

• Signed overflow
for (int i = 0; i <= N; i++)

if N is INT_MAX , the last iteration is undefined behavior. The compiler can assume that
the loop is finite and enable important optimizations, as opposite to unsigned (wrap
around)

• Trivial infinite loops, until C++26
int main() {

while (true) // -> std::this_thread::yield(); in C++26
;

}
void unreachable() { cout << "Hello world!" << endl; }

the code print Hello world! with some clang versions

P2809R3: Trivial infinite loops are not Undefined Behavior
10/58

https://isocpp.org/files/papers/P2809R3.html

Detecting Undefined Behavior

There are several ways to detect or prevent undefined behavior at compile-time and at
run-time:

• Modify the compiler behavior, see Debugging and Testing: Hardening
Techniques

• Using undefined behavior sanitizer, see Debugging and Testing: Sanitizer

• Static analysis tools

• constexpr expressions doesn’t allow undefined behavior

11/58

Detecting Undefined Behavior

constexpr int x1 = 2147483647 + 1; // compile error
constexpr int x2 = (1 << 32); // compile error
constexpr int x3 = (1 << -1); // compile error
constexpr int x4 = 3 / 0; // compile error
constexpr int x5 = *((int*) nullptr) // compile error
constexpr int x6 = 6
constexpr float x7 = reinterpret_cast<float&>(x6); // compile error

Exploring Undefined Behavior Using Constexpr
12/58

https://shafik.github.io/c++/undefined%20behavior/2019/05/11/explporing_undefined_behavior_using_constexpr.html

Error Handing

Recoverable Error Handing

Recoverable Conditions that are not under the control of the program. They indicate
“exceptional” run-time conditions. e.g. file not found, bad allocation, wrong user
input, etc.

A recoverable should be considered unrecoverable if it is extremely rare and difficult to
handle, e.g. bad allocation due to out-of-memory error

The common ways for handling recoverable errors are:

Exceptions Robust but slower and requires more resources
Return code Fast but difficult to handle in complex programs

13/58

Error Handing References

• Modern C++ best practices for exceptions and error handling

• Back to Basics: Exceptions - CppCon2020

• ISO C++ FAQ: Exceptions and Error Handling

• Zero-overhead deterministic exceptions: Throwing values, P0709

• C++ exceptions are becoming more and more problematic, P2544

• std::expected

• C++ Error Handling Strategies – Benchmarks and Performance

14/58

https://docs.microsoft.com/en-us/cpp/cpp/errors-and-exception-handling-modern-cpp?view=msvc-160
https://raw.githubusercontent.com/CppCon/CppCon2020/main/Presentations/back_to_basics_exceptions/back_to_basics_exceptions__klaus_iglberger__cppcon_2020.pdf
https://isocpp.org/wiki/faq/exceptions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0709r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2544r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0323r12.html
https://johnfarrier.com/c-error-handling-strategies-benchmarks-and-performance/

Return Code

Historically, C programs handled errors with return codes, even for unrecoverable errors

enum Status { IllegalValue, Success };

Status f(int* ptr) { return (ptr == nullptr) ? IllegalValue : Success; }

Why such behavior? Debugging → need to understand what / where / why the
program failed

A better approach in C++ involves std::source_location() C++20 and
std::stacktrace() C++23

ABI related issues:
• Removing an enumerator value is an API breaking change
• Adding a new enumerator value associated to a return type is also problematic as it

causes ABI breaking change 15/58

C++ Exceptions - Advantages

C++ Exceptions provide a well-defined mechanism to detect errors passing the
information up the call stack

• Exceptions cannot be ignored. Unhandled exceptions stop program execution
(call std::terminate())

• Intermediate functions are not forced to handle them. They don’t have to
coordinate with other layers and, for this reason, they provide good composability

• Throwing an exception acts like a return statement destroying all objects in the
current scope

• An exception enables a clean separation between the code that detects the error
and the code that handles the error

• Exceptions work well with object-oriented semantic (constructor) 16/58

C++ Exceptions - Disadvantages 1/2

• Code readability: Using exception can involve more code than the functionality
itself

• Code comprehension: Exception control flow is invisible and it is not explicit in
the function signature

• Performance: Extreme performance overhead in the failure case (violate the
zero-overhead principle)

• Dynamic behavior: throw requires dynamic allocation and catch requires
RTTI. It is not suited for real-time, safety-critical, or embedded systems

• Code bloat: Exceptions could increase executable size by 5-15% (or more*)

*Binary size and exceptions
17/58

https://www.sandordargo.com/blog/2023/03/29/binary-size-and-exceptions

C++ Exceptions - Disadvantages 2/2

18/58

C++ Exception Basics

C++ provides three keywords for exception handling:
throw Throws an exception

try Code block containing potential throwing expressions
catch Code block for handling the exception

void f() { throw 3; }

int main() {
try {

f();
} catch (int x) {

cout << x; // print "3"
}

}
19/58

std Exceptions

throw can throw everything such as integers, pointers, objects, etc. The standard
way consists in using the std library exceptions <stdexcept>

include <stdexcept>

void f(bool b) {
if (b)

throw std::runtime_error("runtime error");
throw std::logic_error("logic error");

}
int main() {

try {
f(false);

} catch (const std::runtime_error& e) {
cout << e.what();

} catch (const std::exception& e) {
cout << e.what(); // print: "logic error"

}
} 20/58

Exception Capture

NOTE: C++, differently from other programming languages, does not require explicit
dynamic allocation with the keyword new for throwing an exception. The compiler
implicitly generates the appropriate code to construct and clean up the exception
object. Dynamically allocated objects require a delete call

The right way to capture an exception is by const -reference. Capturing by-value is
also possible but, it involves useless copy for non-trivial exception objects

catch(...) can be used to capture any thrown exception

int main() {
try {

throw "runtime error"; // throw const char*
} catch (...) {

cout << "exception"; // print "exception"
}

}
21/58

Exception Propagation

Exceptions are automatically propagated along the call stack. The user can also
control how they are propagated

int main() {
try {

...
} catch (const std::runtime_error& e) {

throw e; // propagate a copy of the exception
} catch (const std::exception& e) {

throw; // propagate the exception
}

}

22/58

Defining Custom Exceptions

include <exception> // to not confuse with <stdexcept>

struct MyException : public std::exception {
const char* what() const noexcept override { // could be also "constexpr"

return "C++ Exception";
}

};

int main() {
try {

throw MyException();
} catch (const std::exception& e) {

cout << e.what(); // print "C++ Exception"
}

}

23/58

noexcept Keyword

C++03 allows listing the exceptions that a function might directly or indirectly throw,
e.g. void f() throw(int, const char*) {

C++11 deprecates throw and introduces the noexcept keyword

void f1(); // may throw
void f2() noexcept; // does not throw
void f3() noexcept(true); // does not throw
void f4() noexcept(false); // may throw
template<bool X>
void f5() noexcept(X); // may throw if X is false

If a noexcept function throw an exception, the runtime calls std::terminate()

noexcept should be used when throwing an exception is impossible or unacceptable.
It is also useful when the function contains code outside user control, e.g. std
functions/objects 24/58

Function-try-block

Exception handlers can be defined around the body of a function.
The behavior is the same as using the try/catch blocks within the function scope
→ less verbose

void f() try {
... // do something

} catch (const std::runtime_error& e) {
cout << e.what();

} catch (...) { // other exception
...

}

25/58

Memory Allocation Issues 1/4

The new operator automatically throws an exception (std::bad_alloc) if it cannot
allocate the memory

delete never throws an exception (unrecoverable error)

int main() {
int* ptr = nullptr;
try {

ptr = new int[1000];
}
catch (const std::bad_alloc& e) {

cout << "bad allocation: " << e.what();
}
delete[] ptr;

}

26/58

Memory Allocation Issues 2/4

C++ also provides an overload of the new operator with non-throwing memory
allocation

include <new> // std::nothrow

int main() {
int* ptr = new (std::nothrow) int[1000];
if (ptr == nullptr)

cout << "bad allocation";
}

27/58

Memory Allocation Issues 3/4

Throwing exceptions in constructors is fine while it is not allowed in destructors

struct A {
A() { new int[10]; }
∼A() { throw -2; }

};
int main() {

try {
A a; // could throw "bad_alloc"

// "a" is out-of-scope -> throw 2
} catch (...) {

// two exceptions at the same time
}

}

Destructors should be marked noexcept
28/58

Memory Allocation Issues 4/4

struct A {
int* ptr1, *ptr2;

A() {
ptr1 = new int[10];
ptr2 = new int[10]; // if bad_alloc here, ptr1 is lost

}
};

struct A {
std::unique_ptr<int[]> ptr1, ptr2;

A() {
ptr1 = std::make_unique<int[]>(10);
ptr2 = std::make_unique<int[]>(10); // if bad_alloc here,

} // ptr1 is deallocated
}; 29/58

Return Code and Exception Summary

Exception Return Code

Pros

• Cannot be ignored
• Work well with object-oriented semantic
• Information: Exceptions can be arbitrarily rich
• Clean code: Conceptually, clean separation

between the code that detects errors and the
code that handles the error, but. . . *

• Non-Intrusive wrt. API: Proper communication
channel

• Visibility: prototype of the called function
• No performance overhead
• No code bloat
• Easy to debug

Cons

• Visibility: Not visible without further analysis of
the code or documentation

• Clean code: *... handling exception can generate
more code than the functionality itself

• Dynamic behavior: memory and RTTI
• Extreme performance overhead in the failure case
• Code bloat
• Non-trivial to debug

• Easy to ignore, [[nodiscard]] can help
• Cannot be used with object-oriented semantic
• Information: Historically, a simple integer.

Nowadays, richer error code
• Clean code: At least, an if statement after

each function call
• Non-Intrusive wrt. API: Monopolization of

the return channel
30/58

std::expected 1/2

C++23 introduces std::expected to get the best properties of return codes and
exceptions

The class template expected<T, E> contains either:

• A value of type T , the expected value type; or
• A value of type E , an error type used when an unexpected outcome occured

enum class Error { Invalid };

std::expected<int, Error> f(int v) {
if (v > 0)

return 3;
return std::unexpected(Error::Invalid);

}

31/58

std::expected 2/2

The user chooses how to handle the error depending on the context

auto ret = f(n);

// Return code handling
if (!ret)

// error handling
int v = *ret + 3; // execute without checking

// Exception handling
ret.value(); // throw an exception if there is a problem

// Monadic operations
auto lambda = [](int x) { return (x > 3) ? 4 : std::unexpected(Error::Invalid); };
ret.and_then(lambda) // pass the value to another function

.tranform([](int x) { return x + 4; };) // transform the previous value

.transform_error([](auto error_code){ /*error handling*/ }; 32/58

Alternative Error Handling Approaches 1/2

• Global state, e.g. errno
- Easily forget to check for failures
- Error propagation using if statements and early return is manual
- No compiler optimizations due to global state

• Simple error code, e.g. int , enum , etc.
- Easily forget to check for failures (workaround [[nodiscard]])
- Error propagation using if statements and early return is manual
- Potential error propagation through different contexts and losing initial error

information
- Constructor errors cannot be handled

33/58

Alternative Error Handling Approaches 2/2

• std::error_code , standardized error code
- Easily forget to check for failures (workaround [[nodiscard]])
- Error propagation using if statements and early return is manual
- Code bloating for adding new enumerators (see Your own error code)
- Constructor errors cannot be handled

• Supporting libraries, e.g. Boost Outcome, STX, etc.
- Require external dependencies
- Constructor errors cannot be handled in a direct way
- Extra logic for managing return values

34/58

https://akrzemi1.wordpress.com/2017/07/12/your-own-error-code/
https://www.boost.org/doc/libs/1_77_0/libs/outcome/doc/html/index.html
https://lamarrr.github.io/STX/

Smart pointers

Smart Pointers

Smart pointer is a pointer-like type with some additional functionality, e.g. automatic
memory deallocation (when the pointer is no longer in use, the memory it points to is
deallocated), reference counting, etc.

C++11 provides three smart pointer types:
• std::unique_ptr
• std::shared_ptr
• std::weak_ptr

Smart pointers prevent most situations of memory leaks by making the memory
deallocation automatic

C++ Smart Pointers 35/58

http://embeddedartistry.com/blog/2016/9/19/rfr0r76r0ovd0gk574kfsldxfbklgs

Smart Pointers Benefits

• If a smart pointer goes out-of-scope, the appropriate method to release resources
is called automatically. The memory is not left dangling

• Smart pointers will automatically be set to nullptr if not initialized or when
memory has been released

• std::shared_ptr provides automatic reference count

• If a special delete function needs to be called, it will be specified in the pointer
type and declaration, and will automatically be called on delete

36/58

std::unique_ptr - Unique Pointer 1/4

std::unique_ptr is used to manage any dynamically allocated object that is not
shared by multiple objects
include <iostream>
include <memory>
struct A {

A() { std::cout << "Constructor\n"; } // called when A()
∼A() { std::cout << "Destructor\n"; } // called when u_ptr1,

}; // u_ptr2 are out-of-scope
int main() {

auto raw_ptr = new A();
std::unique_ptr<A> u_ptr1(new A());
std::unique_ptr<A> u_ptr2(raw_ptr);

// std::unique_ptr<A> u_ptr3(raw_ptr); // no compile error, but wrong!! (not unique)

// u_ptr1 = raw_ptr; // compile error (not unique)
// u_ptr1 = u_ptr2; // compile error (not unique)

u_ptr1 = std::move(u_ptr2); // delete u_ptr1;
} // u_ptr1 = u_ptr2;

// u_ptr2 = nullptr
37/58

std::unique_ptr - Unique Pointer 2/4

std::unique_ptr methods

• get() returns the underlying pointer

• operator* operator-> dereferences pointer to the managed object

• operator[] provides indexed access to the stored array (if it supports random
access iterator)

• release() returns a pointer to the managed object and releases the ownership

• reset(ptr) replaces the managed object with ptr

Utility method: std::make_unique<T>() creates a unique pointer to a class T that
manages a new object

38/58

std::unique_ptr - Unique Pointer 3/4

include <iostream>
include <memory>
struct A {

int value;
};
int main() {

std::unique_ptr<A> u_ptr1(new A());
u_ptr1->value; // dereferencing
(*u_ptr1).value; // dereferencing

auto u_ptr2 = std::make_unique<A>(); // create a new unique pointer

u_ptr1.reset(new A()); // reset
auto raw_ptr = u_ptr1.release(); // release
delete raw_ptr;

std::unique_ptr<A[]> u_ptr3(new A[10]);
auto& obj = u_ptr3[3]; // access

} 39/58

std::unique_ptr - Unique Pointer 4/4

Implement a custom deleter

include <iostream>
include <memory>
struct A {

int value;
};
int main() {

auto DeleteLambda = [](A* x) {
std::cout << "delete" << std::endl;
delete x;

};

std::unique_ptr<A, decltype(DeleteLambda)>
x(new A(), DeleteLambda);

} // print "delete"
40/58

std::shared_ptr - Shared Pointer 1/3

std::shared_ptr is the pointer type to be used for memory that can be owned by
multiple resources at one time
std::shared_ptr maintains a reference count of pointer objects. Data managed by
std::shared_ptr is only freed when there are no remaining objects pointing to the data

include <iostream>
include <memory>
struct A {

int value;
};
int main() {

std::shared_ptr<A> sh_ptr1(new A());
std::shared_ptr<A> sh_ptr2(sh_ptr1);
std::shared_ptr<A> sh_ptr3(new A());
sh_ptr3 = nullptr; // allowed, the underlying pointer is deallocated

// sh_ptr3 : zero references
sh_ptr2 = sh_ptr1; // allowed. sh_ptr1, sh_ptr2: two references
sh_ptr2 = std::move(sh_ptr1); // allowed // sh_ptr1: zero references

} // sh_ptr2: one references
41/58

std::shared_ptr - Shared Pointer 2/3

std::shared_ptr methods

• get() returns the underlying pointer

• operator* operator-> dereferences pointer to the managed object

• use_count() returns the number of objects referring to the same managed
object

• reset(ptr) replaces the managed object with ptr

Utility method: std::make_shared() creates a shared pointer that manages a new
object. It is more efficient than using the std::shared_ptr constructors because it
performs a single memory allocation instead of two

Difference in make_shared and normal shared_ptr in C++
42/58

https://stackoverflow.com/questions/20895648/difference-in-make-shared-and-normal-shared-ptr-in-c

std::shared_ptr - Shared Pointer 3/3
include <iostream>
include <memory>
struct A {

int value;
};
int main() {

std::shared_ptr<A> sh_ptr1(new A());
auto sh_ptr2 = std::make_shared<A>(); // std::make_shared
std::cout << sh_ptr1.use_count(); // print 1

sh_ptr1 = sh_ptr2; // copy
// std::shared_ptr<A> sh_ptr2(sh_ptr1); // copy (constructor)

std::cout << sh_ptr1.use_count(); // print 2
std::cout << sh_ptr2.use_count(); // print 2

auto raw_ptr = sh_ptr1.get(); // get
sh_ptr1.reset(new A()); // reset
(*sh_ptr1).value = 3; // dereferencing
sh_ptr1->value = 2; // dereferencing

} 43/58

std::weak_ptr - Weak Pointer 1/3

A std::weak_ptr is simply a std::shared_ptr that is allowed to dangle (pointer
not deallocated)

include <memory>

std::shared_ptr<int> sh_ptr(new int);
std::weak_ptr<int> w_ptr = sh_ptr;

sh_ptr = nullptr;
cout << w_ptr.expired(); // print 'true'

44/58

std::weak_ptr - Weak Pointer 2/3

It must be converted to std::shared_ptr in order to access the referenced object

std::weak_ptr methods

• use_count() returns the number of objects referring to the same managed
object

• reset(ptr) replaces the managed object with ptr

• expired() checks whether the referenced object was already deleted (true,
false)

• lock() creates a std::shared_ptr that manages the referenced object

45/58

std::weak_ptr - Weak Pointer 3/3

include <memory>

auto sh_ptr1 = std::make_shared<int>();
cout << sh_ptr1.use_count(); // print 1
std::weak_ptr<int> w_ptr = sh_ptr1;
cout << w_ptr.use_count(); // print 1

auto sh_ptr2 = w_ptr.lock();
cout << w_ptr.use_count(); // print 2 (sh_ptr1 + sh_ptr2)

sh_ptr1 = nullptr;
cout << w_ptr.expired(); // print false
sh_ptr2 = nullptr;
cout << w_ptr.expired(); // print true

46/58

Concurrency

Overview

C++11 introduces the Concurrency library to simplify managing OS threads
include <iostream>
include <thread>

void f() {
std::cout << "first thread" << std::endl;

}

int main(){
std::thread th(f);
th.join(); // stop the main thread until "th" complete

}

How to compile:

$g++ -std=c++11 main.cpp -pthread

47/58

Example

include <iostream>
include <thread>
include <vector>
void f(int id) {

std::cout << "thread " << id << std::endl;
}
int main() {

std::vector<std::thread> thread_vect; // thread vector
for (int i = 0; i < 10; i++)

thread_vect.push_back(std::thread(&f, i));

for (auto& th : thread_vect)
th.join();

thread_vect.clear();
for (int i = 0; i < 10; i++) { // thread + lambda expression

thread_vect.push_back(
std::thread([](){ std::cout << "thread\n"; });

}
}

48/58

Thread Methods 1/2

Library methods:

• std::this_thread::get_id() returns the thread id

• std::thread::sleep_for(sleep_duration)
Blocks the execution of the current thread for at least the specified sleep_duration

• std::thread::hardware_concurrency() returns the number of concurrent threads
supported by the implementation

Thread object methods:

• get_id() returns the thread id

• join() waits for a thread to finish its execution

• detach() permits the thread to execute independently of the thread handle

49/58

Thread Methods 2/2

include <chrono> // the following program could
include <iostream> // produce the output (not deterministic):
include <thread> // "child thread exit" (t_child < t_main)

// "main thread exit"
int main() {

using namespace std::chrono_literals;
std::cout << std::this_thread::get_id();
std::cout << std::thread::hardware_concurrency(); // e.g. print 6

auto lambda = []() {
std::this_thread::sleep_for(1s); // t_child
std::cout << "child thread exit\n";

};
std::thread child(lambda);
child.detach(); // without detach(), child must join() the

// main thread (run-time error otherwise)
std::this_thread::sleep_for(2s); // t_main
std::cout << "main thread exit\n";

} 50/58

Parameters Passing

Parameters passing by-value or by-pointer to a thread function works in the same way
of a standard function. Pass-by-reference requires a special wrapper (std::ref ,
std::cref) to avoid wrong behaviors

include <thread>
void f(int& a, const int& b) {

a = 7 * b;
}
int main() {

int a = 1, b = 2;
std::thread th1(f, a, b); // wrong!!!
th1.join();
cout << a << endl; // print 2!!

std::thread th2(f, std::ref(a), std::cref(b)); // correct
th2.join();
cout << a << endl; // print 49!!

} 51/58

Mutex (The Problem) 1/4

The following code produces (in general) a value < 1000:
include <chrono>
include <iostream>
include <thread>
include <vector>
void f(int& value) {

for (int i = 0; i < 10; i++) {
value++;
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}
int main() {

int value = 0;
std::vector<std::thread> th_vect;
for (int i = 0; i < 100; i++)

th_vect.push_back(std::thread(f, std::ref(value)));
for (auto& it : th_vect)

it.join();
std::cout << value;

}
52/58

Mutex 2/4

C++11 provides the mutex class as synchronization primitive to protect shared data
from being simultaneously accessed by multiple threads
mutex methods:

• lock() locks the mutex, blocks if the mutex is not available
• try_lock() tries to lock the mutex, returns if the mutex is not available
• unlock() unlocks the mutex

More advanced mutex can be found here: en.cppreference.com/w/cpp/thread

C++ includes three mutex wrappers to provide safe copyable/movable objects:
• lock_guard (C++11) implements a strictly scope-based mutex ownership

wrapper
• unique_lock (C++11) implements movable mutex ownership wrapper
• shared_lock (C++14) implements movable shared mutex ownership wrapper 53/58

en.cppreference.com/w/cpp/thread

Mutex - Example 1 3/4

include <mutex>
include <thread> // + iostream, vector, chrono
void f(int& value, std::mutex& m) {

for (int i = 0; i < 10; i++) {
m.lock();
value++; // other threads must wait
m.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}
int main() {

std::mutex m;
int value = 0;
std::vector<std::thread> th_vect;
for (int i = 0; i < 100; i++)

th_vect.push_back(std::thread(f, std::ref(value), std::ref(m)));
for (auto& it : th_vect)

it.join();
cout << value;

}
54/58

Mutex - Example 2 4/4

include <mutex>
include <thread> // + iostream, vector, chrono
void f(int& value, std::mutex& m) {

for (int i = 0; i < 10; i++) {
{

const std::lock_guard<std::mutex> lock(m);
value++; // other threads must wait

}
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}
int main() {

std::mutex m;
int value = 0;
std::vector<std::thread> th_vect;
for (int i = 0; i < 100; i++)

th_vect.push_back(std::thread(f, std::ref(value), std::ref(m)));
for (auto& it : th_vect)

it.join();
cout << value;

}

55/58

Atomic

std::atomic (C++11) class template defines an atomic type that are implemented
with lock-free operations (much faster than locks)
include <atomic> // chrono, iostream, thread, vector
void f(std::atomic<int>& value) {

for (int i = 0; i < 10; i++) {
value++;
std::this_thread::sleep_for(std::chrono::milliseconds(10));

}
}
int main() {

std::atomic<int> value(0);
std::vector<std::thread> th_vect;
for (int i = 0; i < 100; i++)

th_vect.push_back(std::thread(f, std::ref(value)));
for (auto& it : th_vect)

it.join();
std::cout << value; // print 1000

} 56/58

Task-based parallelism 1/2

The future library provides facilities to obtain values that are returned and to catch
exceptions that are thrown by asynchronous tasks

Asynchronous call: std::future async(function, args...)
runs a function asynchronously (potentially in a new thread)
and returns a std::future object that will hold the result

std::future methods:
• T get() returns the result
• wait() waits for the result to become available

async() can be called with two launch policies for a task executed:
• std::launch::async a new thread is launched to execute the task asynchronously
• std::launch::deferred the task is executed on the calling thread the first time its

result is requested (lazy evaluation)
57/58

Task-based parallelism 2/2

include <future> // numeric, algorithm, vector, iostream
template <typename RandomIt>
int parallel_sum(RandomIt beg, RandomIt end) {

auto len = end - beg;
if (len < 1000) // base case

return std::accumulate(beg, end, 0);

RandomIt mid = beg + len / 2;
auto handle = std::async(std::launch::async, // right side

parallel_sum<RandomIt>, mid, end);
int sum = parallel_sum(beg, mid); // left side
return sum + handle.get(); // left + right

}
int main() {

std::vector<int> v(10000, 1); // init all to 1
std::cout << "The sum is " << parallel_sum(v.begin(), v.end());

}
58/58

	Undefined Behavior
	Illegal Behavior
	Platform Specific Behavior
	Unspecified Behavior
	Detecting Undefined Behavior

	Error Handing
	Recoverable Error Handing
	Return Code
	C++ Exceptions
	Defining Custom Exceptions
	noexcept Keyword
	Memory Allocation Issues
	Return Code and Exception Summary
	std::expected
	Alternative Error Handling Approaches

	Smart pointers
	std::unique_ptr
	std::shared_ptr
	std::weak_ptr

	Concurrency
	Thread Methods
	Mutex
	Atomic
	Task-based parallelism

