
Modern C++
Programming

19. Utilities

Federico Busato
2026-01-06

Table of Contents

1 Views Introduction and std::span
std::span

2 std::mdspan
std::extends

Layout

std::layout_right

std::layout_left

std::layout_stride

std::layout_right_padded

std::layout_left_padded

Accessor

3 I/O Stream
Manipulator

ofstream/ifstream

1/110

Table of Contents

4 Strings and std::print
std::string

Conversion from/to Numeric Values

std::string_view

std::format

std::print

5 Math Libraries
<cmath> Math Library

<limits> Numerical Limits

<numbers> Mathematical Constants
2/110

Table of Contents

6 Random Number
Basic Concepts

C++ <random>

Seed

PRNG Period and Quality

Distribution

Recent Algorithms and Performance

Quasi-random

True Random Number Generator (TRNG)

3/110

Table of Contents

7 Time Measuring
Wall-Clock Time

User Time

System Time

4/110

Table of Contents

8 Other Standard Library Classes
std::pair

std::tuple

std::variant

std::optional

std::any

9 Filesystem Library
Query Methods

Modify Methods

5/110

Views Introduction
and std::span

Views

A non-owning view provides access to resources without taking ownership or
responsibility for managing their lifecycle, such as allocation and deallocation

C++ views have trivially-copyable semantic (enforced in C++23) and should be
always passed by-value

C++ provides the following views:

• std::string_view string view (sequence of characters)
• std::span 1D contiguous data view
• std::mdspan N-dimensional data view

6/110

std::span - Overview

C++20 std::span � is a non-owning view of a contiguous sequence of elements

std::span provides a uniform interface for contiguous data, such as
std::vector , std::array , and raw pointers

• std::span is widely used as function parameter
• std::span works with all Standard Library algorithms that operate on ranges or iterators

In addition, std::span ensures interoperability with legacy code, allowing to
replace the common pattern pointer + size with a safer alternative

• Associate the buffer size and the pointer only during the construction (sub-span is also
allowed)

• Bounds-checked access in standard environment (C++26 at()) or in debug mode (see
Debugging and Testing - Hardening Techniques)

7/110

https://en.cppreference.com/w/cpp/container/span

std::span - Basic Properties

std::span supports any data type T . It supports both modifiable (std::span<T>)
and read-only views (std::span<const T>), allowing to enforce const-correctness

std::span can either have a static extent, in which case the number of elements in
the sequence is known at compile-time, or a dynamic extent, determined at run-time

template<
typename T,
size_t Extent = std::dynamic_extent>

class span;

8/110

std::span - Constructions

include
include <array>
include <vector>

int array1[] = {1, 2, 3};
std::span s1{array1}; // static extent

std::array array2 = {1, 2, 3};
std::span s2{array2}; // static extent

auto array3 = new int[3];
std::span s3{array3, 3}; // dynamic extent

std::vector<int> v{1, 2, 3};
std::span s4{v}; // dynamic extent

9/110

std::span - Function Parameter

include <algorithm>
include

void f(std::span<int> span) { // mutable function parameter
for (auto x : span) // range-based loop (safe)

cout << x;
std::fill(span.begin(), span.end(), 3); // std algorithms support

}

void g(std::span<const int> span) {} // read-only function parameter

int array1[] = {1, 2, 3};
f(array1);
g(array1);

auto array2 = new int[3];
f({array2, 3}); 10/110

std::span - Methods

Access:
front() , back() access the first/last element

operator[] , at(i) access specified element, with bounds checking at(i)
data() returns a pointer to the underlying data

Size:
size() number of elements

size_bytes() size in bytes
empty() checks if the span is empty

Subspan:
first(N) , first<N>() subspan of the first N elements

last(N) , last<N>() subspan of the last N elements
subspan(offset, count) generic dynamic subspan

subspan<offset, count>() generic static subspan 11/110

std::span - Function Parameter

include

int array[] = {1, 2, 3, 4, 5};
std::span span(array);

span.front(); // first element
span.bask(); // last element
span.data(); // pointer equal to 'array'

span.size(); // 5 elements
span.size_bytes(); // 20 bytes
span.empty(); // false

span.first(3); // [1, 2, 3] (dynamic)
span.last(2); // [4, 5] (dynamic)
span.subspan(1, 3); // [2, 3, 4] (dynamic)

12/110

std::mdspan

std::mdspan

C++23 std::mdspan is a non-owning view that allows to represent multidimensional
data, from scalars to N-dimensional tensors, in a simple and flexible way

std::mdspan is particularly suited for scientific computing, graphics, robotics, or
more in general in linear algebra applications to abstract the underlying data
organization and provide a uniform interface

13/110

std::mdspan class

template<
typename T,
typename Extents,
typename Layout,
typename Accessor>

class mdspan;

T Type of the elements of the underlying data

Extents Number of dimensions (ranks) and their sizes

Layout Describes how to map multidimensional indices (domain) to a single
linear index (codomain), N × N × ... × N −→ N

Accessor Describes how to access the element pointed out by the linear index

14/110

std::mdspan - Example 1

include <mdspan> compiler explorer �

// A: M x K
// B: K x N
// C: M x N
void matrix_mul(float* matrixA, float* matrixB, float* matrixC,

int M, int N, int K) {
std::mdspan mdA{matrixA, M, K};
std::mdspan mdB{matrixB, K, N};
std::mdspan mdC{matrixC, M, N};
for (int i = 0; i < M; i++) {

for (int j = 0; j < N; j++) {
for (int k = 0; k < K; k++)

mdC[i, j] += mdA[i, k] + mdB[k, j];
}

}
} 15/110

https://godbolt.org/z/eox8zK5h4

Basic Methods

rank() Returns the number of dimensions

extent(r) Returns the extent, namely the size, at the rank index r

stride(r) Returns the stride at the rank index r , namely the distance across
consecutive elements of the same dimensions

size() Returns the size of the multidimensional index space, namely the
product of all extents. It can be different from the underlying data
size, depending on the layout and strides

data_handle() Returns the underlying data handle, e.g. a pointer
std::mdspan md{matrix_ptr, M, N};
md.rank(); // 2
md.extent(0); // N
md.extent(1); // N

md.size(); // M * N
md.stride(0); // N
md.stride(1); // 1
md.data_handle(); // matrix_ptr 16/110

std::extends 1/2

template<typename IndexType,
size_t... Extents>

class extents;

IndexType Type of the index, e.g. int , size_t , etc.

Extents List of sizes, one for each dimension
• An arbitrary number to specify the size at compile-time
• std::dynamic_extent if the dimension is determined at run-time

std::extents<int> ext1; // Scalar size
std::extents<int, 4, 5> ext2; // Matrix size: 4 x 5
std::extents<int, 4, std::dynamic_extent> ext3{4, n}; // Tensor size: 4 × n

17/110

std::extends 2/2

The standard library also provides convenient alias templates for all-dynamic extents

template<typename IndexType, size_t Rank>
using dextents = extents<IndexType, dynamic_extent, ... /*Rank-times*/ >

template<size_t Rank, class IndexType = size_t>
using dims = dextents<IndexType, Rank>; // C++26

std::dextents<int, 3> ext4{a, b, c}; // Tensor dynamic size: a × b × c
std::dims<3> ext5{a, b, c}; // Tensor dynamic size: a × b × c, C++26

18/110

std::mdspan - Example 2

include <mdspan> compiler explorer �

template<typename T, typename E, typename L, typename A>
void print(std::mdspan<T, E, L, A> md) {

for (int i = 0; i < md.extent(0); i++) {
for (int j = 0; j < md.extent(1); j++)

cout << md[i, j] << ", ";
cout << "\n";

}
cout << "\n";

}

float array[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
std::dims<2> extents{2, 4};
std::mdspan md{array, extents};
print(md); // 1, 2, 3, 4,

// 5, 6, 7, 8, 19/110

https://godbolt.org/z/f3aTszWP3

Layout

The mdspan layout describes how the elements of the underlying data are arranged in
memory.
The main, functionality of the layout is to map a list of indices to a single offset with
the method operator()(Indices...)

The standard library provides the following predefined layouts:

layout_right Row-major, right-index varies fastest, C/C++

layout_left Column-major, left-index varies fastest, Fortran

layout_stride Arbitrary dynamic strides for each dimension

layout_right_padded typically 2-D, row-major with a single customizable stride across
rows (second dimension) to exploit alignment, C++26

layout_left_padded typically 2-D, column-major with a single customizable stride
across columns (first dimension) to exploit alignment, C++26 20/110

std::layout_right

mdspan sizes: e1 × e2 × ... × en

layout_right(i1, i2, ..., in−1, in) → i1 ·
n∑

j=2
ej + i2 ·

n∑
j=3

ej + ... + in−1 · en + in

mdspan: 2 × 4 × 3
layout_right(1, 1, 2) → 1 · 4 · 3 + 1 · 3 + 2 = 16

21/110

std::layout_left

mdspan sizes: e1 × e2 × ... × en

layout_left(i1, i2, ..., in−1, in) → i1 + i2 · e1 + i3 ·
n∑

j=n−2
ej + ... + in ·

n∑
j=2

ej

mdspan: 4 × 3 × 2
layout_left(3, 0, 1) → 3 + 0 · 4 + 1 · 4 · 3 = 15

22/110

std::layout_stride

mdspan sizes: e1 × e2 × ... × en

strides: s1 × s2 × ... × sn

layout_stride(i1, i2, ..., in−1, in) → i1 · s1 + i2 · s2 + ... + in · sn

mdspan: 3 × 2 (submatrix), strides: 2, 6
layout_stride(1, 2) → 1 · 2 + 2 · 6 = 14, 14 + 8 = 22

23/110

std::layout_right_padded

mdspan sizes: e1 × e2

stride: S, generally S > e2

layout_right_padded(i1, i2) → i1 · S + i2

mdspan: 4 × 3, stride: 4
Implication: if the value type is float , all rows are 16-byte aligned

24/110

std::layout_left_padded

mdspan sizes: e1 × e2

stride: S, generally S > e1

layout_left_padded(i1, i2) → i1 + i2 · S

mdspan: 3 × 3, stride: 4
Implication: if the value type is float , all columns are 16-byte aligned

25/110

Layout - Example 1

include <mdspan> compiler explorer �

include <array>

float array[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
std::dims<2> extents{2, 4};
std::mdspan md_right(array, std::layout_right::mapping{extents});
std::mdspan md_left(array, std::layout_left::mapping{extents});
print(md_right); // 1, 2, 3, 4,

// 5, 6, 7, 8,
print(md_left); // 1, 3, 5, 7,

// 2, 4, 6, 8,

std::dims<2> extents1{2, 2};
std::array strides{4, 2};
std::mdspan md_stride(array, std::layout_stride::mapping{extents1, strides});
print(md_stride); // 1, 3,

// 5, 7, 26/110

https://godbolt.org/z/4a77K7sM6

Layout - Example 2

std::dims extents1{2, 3};
using layoutA = std::layout_right_padded<std::dynamic_extent>;
std::mdspan md_right_padded(array, layoutA::mapping{extents, 4});
print(md_right_padded); // 1, 3, 5,

// 5, 6, 7,

std::dims extents1{1, 4};
using layoutB = std::layout_left_padded<std::dynamic_extent>;
std::mdspan md_left_padded(array, layoutB::mapping{extents, 4});
print(md_right_padded); // 1, 3, 5, 7,

27/110

Layout-related Methods

stride(i) The stride of the dimension i, namely the number of steps in
the linear index-space to move to the next element in the ith
dimension-space

required_span_size() The maximum value of the linear index (codomain) among all
possible values of the multidimensional indices

is_unique() All multidimensional indices produce a distinct linear index
(codomain)

is_exhaustive() If all possible values of the codomain can be reached, e.g. a
matrix with padding is not exhaustive

is_strided() If there is a fixed stride between elements of the same
dimension, for all dimensions 28/110

Layout - Example 3

float array[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
std::dims<2> extentsA{2, 3}; // compiler explorer �

using layoutA = std::layout_right_padded<std::dynamic_extent>;
layoutA::mapping mappingA{extents, 4};
std::mdspan mdA(array, mappingA);
cout << mdA.stride(0) << ", " << mdA.stride(1) << "\n" // 4, 1

<< mdA.size() << ", " << mappingA.required_span_size() << "\n" // 6, 4 * 2 = 8
<< mdA.is_exhaustive() << " " // false
<< mdA.is_unique() << ", " << mdA.is_strided() << "\n"; // true, true

std::dims<2> extentsB{2, 3};
std::layout_left::mapping mappingB{extentsB};
std::mdspan mdB(array, mappingB);
cout << mdB.stride(0) << ", " << mdB.stride(1) << "\n" // 1, 3

<< mdB.size() << ", " << mappingB.required_span_size() << "\n" // 6, 2 * 3 = 6
<< mdB.is_exhaustive() << " " // true
<< mdB.is_unique() << ", " << mdB.is_strided() << "\n"; // true, true 29/110

https://godbolt.org/z/3Ese367sf

Accessor 1/3

The main functionality of an accessor is to provide a reference to an element pointed
out by a 1-D linear index
reference access(data_handle_type p, size_t i);

An accessor describes how to interpret mdspan values. Some examples:

• Scaling, C++26 std::linalg::scaled_accessor cppref �, P1673 �

• Conjugate, C++26 std::linalg::conjugated_accessor cppref �, P1673 �

• Pointer alignment, C++26 std::aligned_accessor cppref �, P2897 �

• Describe implicit values, avoiding explicit storage
• Prevent pointer aliasing assumptions by the compiler (restrict)
• Atomic operations (std::atomic_ref)
• and even move a robot arm, CppNow’23, Spanny �

30/110

https://en.cppreference.com/w/cpp/numeric/linalg/scaled_accessor
https://wg21.link/P1673
https://en.cppreference.com/w/cpp/numeric/linalg/conjugated_accessor
https://wg21.link/P1673
https://en.cppreference.com/w/cpp/container/mdspan/aligned_accessor
https://wg21.link/P2897
https://www.youtube.com/watch?v=FZZ3CDnBEx4

Accessor 2/3

include <mdspan>
include <linalg>

float array[] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
std::dims<2> extents{2, 3};
std::layout_right::mapping mapping{extents};
std::mdspan mdA{array, mapping, std::linalg::scaled_accessor{2.0f}};
print(mdA); // 2, 4, 6,

// 8, 10, 12,
print(std::linalg::scaled(mdA, 4.0f)); // 4, 8, 12,

// 16, 20, 24,

std::mdspan mdB{array, mapping, std::aligned_accessor<16>{}};
// mdB underlying data is 16-byte aligned

31/110

Accessor ⋆ 3/3

template<typename ElementType> // potentially other template parameters
struct simple_accessor {

using offset_policy = std::default_accessor<ElementType>;
using element_type = ElementType;
using reference = ElementType&;
using data_handle_type = ElementType*;
// constructors, conversions, etc.

constexpr reference access(data_handle_type p, size_t i) const noexcept {
return p[i]; // main customization point

}
constexpr data_handle_type
offset(data_handle_type p, size_t i) const noexcept {

return p + i;
}

};
32/110

I/O Stream

I/O Stream

<iostream> input/output library refers to a family of classes and supporting
functions in the C++ Standard Library that implement stream-based input/output
capabilities

There are four predefined iostreams:

• cin standard input (stdin)
• cout standard output (stdout) [buffered]
• cerr standard error (stderr) [unbuffered]
• clog standard error (stderr) [buffered]

buffered: the content of the buffer is not written to disk / console until some events
occur

33/110

I/O Stream (manipulator) 1/3

Basic I/O Stream manipulator:

• flush flushes the output stream cout ≪ flush;

• endl shortcut for cout ≪ "\n" ≪ flush;

cout ≪ endl

• flush and endl force the program to synchronize with the terminal → very
slow operation!

34/110

I/O Stream (manipulator) 2/3

• Set integral representation: default: dec
cout ≪ dec ≪ 0xF; prints 16
cout ≪ hex ≪ 16; prints 0xF
cout ≪ oct ≪ 8; prints 10

• Print the underlying bit representation of a value:
include <bitset>
std::cout << std::bitset<32>(3.45f); // (32: num. of bits)
// print 01000000010111001100110011001101

• Print true/false text:
cout ≪ boolalpha ≪ 1; prints true
cout ≪ boolalpha ≪ 0; prints false

35/110

I/O Stream (manipulator) 3/3

<iomanip>

• Set decimal precision: default: 6
cout ≪ setprecision(2) ≪ 3.538; → 3.54

• Set float representation: default: std::defaultfloat
cout ≪ setprecision(2) ≪ fixed ≪ 32.5; → 32.50

cout ≪ setprecision(2) ≪ scientific ≪ 32.5; → 3.25e+01

• Set alignment: default: right
cout ≪ right ≪ setw(7) ≪ "abc" ≪ "##"; → ␣␣␣␣abc##

cout ≪ left ≪ setw(7) ≪ "abc" ≪ "##"; → abc␣␣␣␣##
(better than using tab \t)

36/110

I/O Stream - std::cin

std::cin is an example of input stream. Data coming from a source is read by the program.
In this example cin is the standard input

include <iostream>

int main() {
int a;
std::cout << "Please enter an integer value:" << endl;
std::cin >> a;

int b;
float c;
std::cout << "Please enter an integer value "

<< "followed by a float value:" << endl;
std::cin >> b >> c; // read an integer and store into "b",

} // then read a float value, and store
// into "c"

37/110

I/O Stream - ofstream/ifstream 1/3

ifstream , ofstream are output and input stream too

<fstream>

• Open a file for reading
Open a file in input mode: ifstream my_file("example.txt")

• Open a file for writing
Open a file in output mode: ofstream my_file("example.txt")
Open a file in append mode:

ofstream my_file("example.txt", ios::out | ios::app)

• Read a line getline(my_file, string)

• Close a file my_file.close()

• Check the stream integrity my_file.good()
38/110

I/O Stream - ofstream/ifstream 2/3

• Peek the next character
char current_char = my_file.peek()

• Get the next character (and advance)
char current_char = my_file.get()

• Get the position of the current character in the input stream
int byte_offset = my_file.tellg()

• Set the char position in the input sequence
my_file.seekg(byte_offset) (absolute position)
my_file.seekg(byte_offset, position) (relative position)

where position can be: ios::beg (the begin), ios::end (the end),
ios::cur (current position)

39/110

I/O Stream - ofstream/ifstream 3/3

• Ignore characters until the delimiter is found
my_file.ignore(max_stream_size, <delim>)
e.g. skip until end of line \n

• Get a pointer to the stream buffer object currently associated with the stream
my_file.rdbuf()
can be used to redirect file stream

40/110

I/O Stream - Example 1

Open a file and print line by line:
include <iostream>
include <fstream>

int main() {
std::ifstream fin("example.txt");
std::string str;
while (std::getline(fin, str))

std::cout << str << "\n";
fin.close();

}

An alternative version with redirection:
include <iostream>
include <fstream>

int main() {
std::ifstream fin("example.txt");
std::cout << fin.rdbuf();
fin.close();

}

Reading files line by line in C++ using ifstream 41/110

https://gehrcke.de/2011/06/reading-files-in-c-using-ifstream-dealing-correctly-with-badbit-failbit-eofbit-and-perror/

I/O Stream - Example 2

example.txt:
23␣70␣␣␣44\n
\t57\t89

The input stream is independent from the
type of space (multiple space, tab, new-
line \n, \r\n, etc.)

Another example:
include <iostream>
include <fstream>

int main() {
std::ifstream fin("example.txt");
char c = fin.peek(); // c = '2'
while (fin.good()) {

int var;
fin >> var;
std::cout << var;

} // print 2370445789
fin.seekg(4);
c = fin.peek(); // c = '0'
fin.close();

}
42/110

I/O Stream -Check the End of a File

• Check the current character
while (fin.peek() != std::char_traits<char>::eof()) // C: EOF

fin >> var;

• Check if the read operation fails
while (fin >> var)

...

• Check if the stream past the end of the file
while (true) {

fin >> var
if (fin.eof())

break;
}

43/110

I/O Stream (checkRegularType)

Check if a file is a regular file and can be read/written

include <sys/types.h>
include <sys/stat.h>
bool checkRegularFile(const char* file_path) {

struct stat info;
if (::stat(file_path, &info) != 0)

return false; // unable to access
if (info.st_mode & S_IFDIR)

return false; // is a directory
std::ifstream fin(file_path); // additional checking
if (!fin.is_open() || !fin.good())

return false;
try { // try to read

char c; fin >> c;
} catch (std::ios_base::failure&) {

return false;
}
return true;

}
44/110

I/O Stream - File size

Get the file size in bytes in a portable way:
long long int fileSize(const char* file_path) {

std::ifstream fin(file_path); // open the file
fin.seekg(0, ios::beg); // move to the first byte
std::istream::pos_type start_pos = fin.tellg();

// get the start offset
fin.seekg(0, ios::end); // move to the last byte
std::istream::pos_type end_pos = fin.tellg();

// get the end offset
return end_pos - start_pos; // position difference

}

see C++17 file system utilities

45/110

Strings and
std::print

std::string 1/4

std::string is a wrapper of character sequences

More flexible and safer than raw char array but can be slower

include <string>

int main() {
std::string a; // empty string
std::string b("first");

using namespace std::string_literals; // C++14
std::string c = "second"s; // C++14

}std::string supports constexpr in C++20

46/110

std::string - Capacity and Search 2/4

• empty() returns true if the string is empty, false otherwise

• size() returns the number of characters in the string

• find(string) returns the position of the first substring equal to the given character
sequence or npos if no substring is found

• rfind(string) returns the position of the last substring equal to the given character
sequence or npos if no substring is found

• find_first_of(char_seq) returns the position of the first character equal to one of
the characters in the given character sequence or npos if no characters is found

• find_last_of(char_seq) returns the position of the last character equal to one of the
characters in the given character sequence or npos if no characters is found

npos special value returned by string methods 47/110

std::string - Operations 3/4

• new_string substr(start_pos)
returns a new substring [start_pos, end]
new_string substr(start_pos, count)

returns a new substring [start_pos, start_pos + count)

• clear() removes all characters from the string

• erase(pos) removes the character at position
erase(start_pos, count)

removes the characters at positions [start_pos, start_pos + count)

• replace(start_pos, count, new_string)
replaces the part of the string indicated by [start_pos, start_pos + count) with
new_string

• c_str()
returns a pointer to the raw char sequence 48/110

std::string - Overloaded Operators 4/4

• access specified character string1[i]

• string copy string1 = string2

• string compare string1 == string2
works also with !=,<,≤,>,≥

• concatenate two strings string_concat = string1 + string2

• append characters to the end string1 += string2

49/110

Conversion from/to Numeric Values

Converts a string to a numeric value C++11:
• stoi(string) string to signed integer

• stol(string) string to long signed integer

• stoul(string) string to long unsigned integer

• stoull(string) string to long long unsigned integer

• stof(string) string to floating point value (float)

• stod(string) string to floating point value (double)

• stold(string) string to floating point value (long double)

• C++17 std::from_chars(start, end, result, base) fast string conversion (no
allocation, no exception)

Converts a numeric value to a string:
• C++11 to_string(numeric_value) numeric value to string 50/110

Examples

std::string str("si vis pacem para bellum");
cout << str.size(); // print 24
cout << str.find("vis"); // print 3
cout << str.find_last_of("bla"); // print 21, 'l' found

cout << str.substr(7, 5);// print "pacem", pos=7 and count=5
cout << str[1]; // print 'i'
cout << (str == "vis"); // print false
cout << (str < "z"); // print true
const char* raw_str = str.c_str();

cout << string("a") + "b"; // print "ab"
cout << string("ab").erase(0); // print 'b'

char* str2 = "34";
int a = std::stoi(str2); // a = 34;
std::string str3 = std::to_string(a); // str3 = "34"

51/110

Tips

• Conversion from integer to char letter (e.g. 3 → 'C'):
static_cast<char>('A'+ value)
value ∈ [0, 26] (English alphabet)

• Conversion from char to integer (e.g. ’C’ → 3): value - 'A'
value ∈ [0, 26]

• Conversion from digit to char number (e.g. 3 → '3'):
static_cast<char>('0'+ value)
value ∈ [0, 9]

• char to string std::string(1, char_value)

52/110

std::string_view 1/3

C++17 std::string_view describes a minimum common interface to interact with
string data:

• const std::string&
• const char*

The purpose of std::string_view is to avoid copying data which is already owned
by the original object

include <string>
include <string_view>

std::string str = "abc"; // new memory allocation + copy
std::string_view = "abc"; // only the reference

53/110

std::string_view 2/3

std::string_view provides similar functionalities of std::string

include <iostream>
include <string>
include <string_view>

void string_op1(const std::string& str) {}
void string_op2(std::string_view str) {}

string_op1("abcdef"); // allocation + copy
string_op2("abcdef"); // reference

const char* str1 = "abcdef";
std::string str2(str1); // allocation + copy
std::cout << str2.substr(0, 3); // print "abc"

std::string_view str3(str1); // reference
std::cout << str3.substr(0, 3); // print "abc" 54/110

std::string_view 3/3

std::string_view supports constexpr constructor and methods

constexpr std::string_view str1("abc");
constexpr std::string_view str2 = "abc";

constexpr char c = str1[0]; // 'a'
constexpr bool b = (str1 == str2); // 'true'

constexpr int size = str1.size(); // '3'
constexpr std::string_view str3 = str1.substr(0, 2); // "ab"

constexpr int pos = str1.find("bc"); // '1'

55/110

std::format 1/2

printf functions: no automatic type deduction, error prone, not extensible

stream objects: very verbose, hard to optimize

C++20 std::format provides python style formatting:

• Type-safe
• Support positional arguments
• Extensible (support user-defined types)
• Return a std::string

56/110

std::format - Example 2/2

Integer formatting
std::format("{}", 3); // "3"
std::format("{:b}", 3); // "101"

Floating point formatting
std::format("{:.1f}", 3.273); // "3.1"

Alignment
std::format("{:>6}", 3.27); // " 3.27"
std::format("{:<6}", 3.27); // "3.27 "

Argument reordering
std::format("{1} - {0}", 1, 3); // "3 - 1"

57/110

std::print

C++23 introduces std::print() std::println()

std::print("Hello, {}!\n", name);

std::println("Hello, {}!", name); // prints a newline

std::print in C++23 58/110

https://vitaut.net/posts/2023/print-in-cpp23/

Math Libraries

<cmath> Math Library 1/2

<cmath> �

• abs(x) computes absolute value, |x |, C++11

• exp(x) returns e raised to the given power, ex

• exp2(x) returns 2 raised to the given power, 2x , C++11

• log(x) computes natural (base e) logarithm, loge(x)

• log10(x) computes base 10 logarithm, log10(x)

• log2(x) computes base 2 logarithm, log2(x), C++11

• pow(x, y) raises a number to the given power, x y

• sqrt(x) computes square root,
√

x

• cqrt(x) computes cubic root, 3
√

x , C++11
59/110

https://en.cppreference.com/w/cpp/header/cmath

<cmath> Math Library 2/2

• sin(x) computes sine, sin(x)

• cos(x) computes cosine, cos(x)

• tan(x) computes tangent, tan(x)

• ceil(x) nearest non-decimal value not less than the given value, ⌈x⌉

• floor(x) nearest non-decimal value not greater than the given value, ⌊x⌋

• round(x) rounding to the nearest non-decimal value halfway cases away from zero

Math functions in C++11 can be applied directly to integral types without implicit/explicit
casting (return type: floating point).

60/110

<limits> Numerical Limits

Get numeric limits of a given type:

<limits> � C++11

T numeric_limits<T>:: max() // returns the maximum finite value
// value representable

T numeric_limits<T>:: min() // returns the minimum finite value
// value representable

T numeric_limits<T>:: lowest() // returns the lowest finite
// value representable

61/110

https://en.cppreference.com/w/cpp/types/numeric_limits

<numbers> Mathematical Constants

<numbers> � C++20
The header provides numeric constants

• e Euler number e

• pi π

• phi Golden ratio 1+
√

5
2

• sqrt2
√

2

62/110

https://en.cppreference.com/w/cpp/header/numbers

Integer Division

Integer ceiling division and rounded division:

• Ceiling Division:
⌈

value
div

⌉
unsigned ceil_div(unsigned value, unsigned div) {

return (value + div - 1) / div;
} // note: may overflow

• Rounded Division:
⌊value

div
+ 1

2

⌋
unsigned round_div(unsigned value, unsigned div) {

return (value + div / 2) / div;
} // note: may overflow

Note: do not use floating-point conversion (see Basic Concept I)

63/110

Random Number

Random Number

“Random numbers should not be generated with a method chosen at random”
— Donald E. Knuth

Applications: cryptography, simulations (e.g. Monte Carlo), etc. 64/110

Random Number

see Lavarand
65/110

https://en.wikipedia.org/wiki/Lavarand

Basic Concepts

• A pseudorandom (PRNG) sequence of numbers satisfies most of the statistical
properties of a truly random sequence but is generated by a deterministic algorithm
(deterministic finite-state machine)

• A quasirandom sequence of n-dimensional points is generated by a deterministic
algorithm designed to fill an n-dimensional space evenly

• The state of a PRNG describes the status of the generator (the values of its variables),
namely where the system is after a certain amount of transitions

• The seed is a value that initializes the starting state of a PRNG. The same seed always
produces the same sequence of results

• The offset of a sequence is used to skip ahead in the sequence

• PRNGs produce uniformly distributed values. PRNGs can also generate values according
to a probability function (binomial, normal, etc.) 66/110

C++ <random> 1/2

The problem: C rand() function produces poor quality random numbers

• C++14 discourage the use of rand() and srand()

C++11 introduces pseudo random number generation (PRNG) facilities to produce
random numbers by using combinations of generators and distributions

A random generator requires four steps:
(1) Select the seed

(2) Define the random engine (optional)
<type_of_random_engine> generator(seed)

(3) Define the distribution
<type_of_distribution> distribution(range_start, range_end)

(4) Produce the random number
distribution(generator) 67/110

C++ <random> 2/2

Simplest example:

include <iostream>
include <random>

int main() {
std::random_device rd;
std::default_random_engine generator{rd{}};
std::uniform_int_distribution<int> distribution{0, 9};

std::cout << distribution(generator); // first random number
std::cout << distribution(generator); // second random number

}

It generates two random integer numbers in the range [0, 9] by using the default
random engine

68/110

Seed 1/4

Given a seed, the generator produces always the same sequence

The seed could be selected randomly by using the current time:

include <random>
include <chrono>

unsigned seed = std::chrono::system_clock::now()
.time_since_epoch().count();

std::default_random_engine generator{seed};

chrono::system_clock::now() returns an object representing the current point in time
.time_since_epoch().count() returns the count of ticks that have elapsed since January 1, 1970

(midnight UTC/GMT)

Problem: Consecutive calls return very similar seeds
69/110

Seed 2/4

Pseuso seed: easy to guess, e.g. single source of randomness
Secure seed: hard to guess, e.g. multiple sources of randomness

How do I generate a random integer in C#?
70/110

https://stackoverflow.com/a/37804448/6585879

Seed 3/4

A random device std::random_device is a uniformly distributed integer generator
that produces non-deterministic random numbers, e.g. from a hardware device such as
/dev/urandom

include <random>

std::random_device rnd_device;
std::default_random_engine generator{rnd_device()};

Note: Not all OSs provide a random device

71/110

Seed 4/4

std::seed_seq consumes a sequence of integer-valued data and produces a number
of unsigned integer values in the range [0, 232 − 1]. The produced values are
distributed over the entire 32-bit range even if the consumed values are close

include <random>
include <chrono>

unsigned seed1 = std::chrono::system_clock::now()
.time_since_epoch().count();

unsigned seed2 = seed1 + 1000;

std::seed_seq seq1{seed1, seed2};
std::default_random_engine generator1{seq};

72/110

PRNG Period and Quality

PRNG Period
The period (or cycle length) of a PRNG is the length of the sequence of numbers that the
PRNG generates before repeating

PRNG Quality
(informal) If it is hard to distinguish a generator output from truly random sequences, we call it
a high quality generator. Otherwise, we call it low quality generator

Generator Quality Period Randomness

Linear Congruential Poor 231 ≈ 109 Statistical tests
Mersenne Twister 32/64-bit High 106000 Statistical tests
Subtract-with-carry 24/48-bit Highest 10171 Mathematically proven

73/110

Randomness Quality

• On C++ Random Number Generator Quality
• It is high time we let go of the Mersenne Twister 74/110

https://arvid.io/2018/06/30/on-cxx-random-number-generator-quality/
https://arxiv.org/abs/1910.06437

Random Engines

• Linear congruential (LF)
The simplest generator engine. Modulo-based algorithm:
xi+1 = (αxi + c)mod m where α, c , m are implementation defined
C++ Generators: std::minstd_rand , std::minstd_rand0 ,
std::knuth_b

• Mersenne Twister (M. Matsumoto and T. Nishimura, 1997)
Fast generation of high-quality pseudorandom number. It relies on Mersenne prime number.
(used as default random generator in linux)
C++ Generators: std::mt19937 , std::mt19937_64

• Subtract-with-carry (LF) (G. Marsaglia and A. Zaman, 1991)
Pseudo-random generation based on Lagged Fibonacci algorithm (used for example by
physicists at CERN)
C++ Generators: std::ranlux24_base , std::ranlux48_base , std::ranlux24 ,
std::ranlux48

75/110

Statistical Tests

The table shows after how many iterations the generator fails the statistical tests

Generator 256M 512M 1G 2G 4G 8G 16G 32G 64G 128G 256G 512G 1T

ranlux24_base ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ranlux48_base ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

minstd_rand ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

minstd_rand0 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

knuth_b ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

mt19937 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

mt19937_64 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

ranlux24 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ranlux48 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

76/110

Space and Performance

Generator Predictability State Performance

Linear Congruential Trivial 4-8 B Fast

Knuth Trivial 1 KB Fast

Mersenne Twister Trivial 2 KB Good

randlux_base Trivial 8-16 B Slow

randlux Unknown? ∼120 B Super slow

77/110

Distribution

• Uniform distribution
uniform_int_distribution<T>(range_start, range_end) where T is integral type

uniform_real_distribution<T>(range_start, range_end) where T is floating
point type

• Normal distribution P (x) = 1
σ

√
2π

e− (x−µ)2

2σ2

normal_distribution<T>(mean, std_dev)
where T is floating point type

• Exponential distribution P (x , λ) = λe−λx

exponential_distribution<T>(lambda)
where T is floating point type

78/110

Examples

unsigned seed = ...

// Original linear congruential
minstd_rand0 lc1_generator(seed);
// Linear congruential (better tuning)
minstd_rand lc2_generator(seed);
// Standard mersenne twister (64-bit)
mt19937_64 mt64_generator(seed);
// Subtract-with-carry (48-bit)
ranlux48_base swc48_generator(seed);

uniform_int_distribution<int> int_distribution(0, 10);
uniform_real_distribution<float> real_distribution(-3.0f, 4.0f);
exponential_distribution<float> exp_distribution(3.5f);
normal_distribution<double> norm_distribution(5.0, 2.0);

79/110

Recent Algorithms and Performance

Recent algorithms:
• PCG, A Family of Better Random Number Generators
• Xoshiro / Xoroshiro generators and the PRNG shootout
• The Xorshift128+ random number generator fails BigCrush
• RapidHash �

• DualMix128: A Fast and Simple C PRNG �

Parallel algorithms:
• Squares: A Fast Counter-Based RNG
• Parallel Random Numbers: As Easy as 1, 2, 3 (Philox)
• OpenRNG: ARM Random Number Generator Library

If strong random number quality properties are not needed, it is possible to generate a
random permutation of integer values (with period of 232) in a very efficient way by
using hashing functions, see Hash Function Prospector � 80/110

http://www.pcg-random.org/
http://prng.di.unimi.it/
https://lemire.me/blog/2017/09/08/the-xorshift128-random-number-generator-fails-bigcrush/
https://github.com/Nicoshev/rapidhash
https://github.com/the-othernet/DualMix128
https://arxiv.org/pdf/2004.06278
https://dl.acm.org/doi/pdf/10.1145/2063384.2063405
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/openrng-24-04
https://github.com/skeeto/hash-prospector

Performance Comparison

Random number generators for C++ performance tested 81/110

https://thompsonsed.co.uk/random-number-generators-for-c-performance-tested

Quasi-random 1/2

The quasi-random numbers have the low-discrepancy property that is a measure of
uniformity for the distribution of the point for the multi-dimensional case

• Quasi-random sequence, in comparison to pseudo-random sequence, distributes
evenly, namely this leads to spread the number over the entire region

• The concept of low-discrepancy is associated with the property that the successive
numbers are added in a position as away as possible from the other numbers that
is, avoiding clustering (grouping of numbers close to each other)

82/110

Quasi-random 2/2

Pseudo-random vs. Quasi random

83/110

True Random Number Generator (TRNG)

Most modern CPUs provide True Random Number Generator (TRNG). These
generators use physical processes, such as electrical or thermal noise, to produce truly
non-deterministic random numbers.

The hardware provides two different functionalities, one to produce the seed for a
pseudorandom number generator, and another to cryptographically (securely) generate
random number sequences. Hardware TRNG are typically slower than software PRNGs.

TRNG support:

• Query: Instructions rdseed and rdrand on Intel/AMD and RNDR on Arm in
/proc/cpuinfo .

• Linux provides such functionalities via /dev/random and /dev/urandom .
• _rdrand*() functions in immintrin.h , Intel Intrinsics Guide �

84/110

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#ig_expand=5627,5265&cats=Random

Time Measuring

Time Measuring 1/2

Wall-Clock/Real time
It is the human perception of the passage of time from the start to the completion of
a task

User/CPU time
The amount of time spent by the CPU to compute in user code

System time
The amount of time spent by the CPU to compute system calls (including I/O calls)
executed into kernel code

85/110

Time Measuring 2/2

The Wall-clock time measured on a concurrent process platform may include the time
elapsed for other tasks

The User/CPU time of a multi-thread program is the sum of the execution time of all
threads

If the system workload (except the current program) is very low and the program uses
only one thread then
Wall-clock time = User time + System time

86/110

Time Measuring - Wall-Clock Time 1/3

::gettimeofday() : time resolution 1µs

include <time.h> //struct timeval
include <sys/time.h> //gettimeofday()

struct timeval start, end; // timeval {second, microseconds}
::gettimeofday(&start, NULL);
... // code
::gettimeofday(&end, NULL);

long start_time = start.tv_sec * 1000000 + start.tv_usec;
long end_time = end.tv_sec * 1000000 + end.tv_usec;
cout << "Elapsed: " << end_time - start_time; // in microsec

Problems: Linux only (not portable), the time is not monotonic increasing (timezone), time
resolution is big

87/110

Time Measuring - Wall-Clock Time 2/3

std::chrono C++11

include <chrono>
auto start_time = std::chrono::system_clock::now();
... // code
auto end_time = std::chrono::system_clock::now();

std::chrono::duration<double> diff = end_time - start_time;
cout << "Elapsed: " << diff.count(); // in seconds
cout << std::chrono::duration_cast<milli>(diff).count(); // in ms

Problems: The time is not monotonic increasing (timezone)

88/110

Time Measuring - Wall-Clock Time 3/3

An alternative of system_clock is steady_clock which ensures monotonic
increasing time.

steady_clock is implemented over clock_gettime on POSIX system and has 1ns
time resolution

include <chrono>
auto start_time = std::chrono::steady_clock::now();
... // code
auto end_time = std::chrono::steady_clock::now();

However, the overhead of C++ API is not always negligible, e.g.
Linux libstdc++ → 20ns, Mac libc++ → 41ns

Measuring clock precision 89/110

https://vitaut.net/posts/2023/measuring-clock-precision/

Time Measuring - User Time

std::clock , implemented over clock_gettime on POSIX system and has 1ns
time resolution

include <chrono>

clock_t start_time = std::clock();
... // code
clock_t end_time = std::clock();

float diff = static_cast<float>(end_time - start_time) / CLOCKS_PER_SEC;
cout << "Elapsed: " << diff; // in seconds

90/110

Time Measuring - User/System Time

include <sys/times.h>

struct ::tms start_time, end_time;
::times(&start_time);
... // code
::times(&end_time);

auto user_diff = end_time.tmus_utime - start_time.tms_utime;
auto sys_diff = end_time.tms_stime - start_time.tms_stime;
float user = static_cast<float>(user_diff) / ::sysconf(_SC_CLK_TCK);
float sys = static_cast<float>(sys_diff) / ::sysconf(_SC_CLK_TCK);
cout << "user time: " << user; // in seconds
cout << "system time: " << sys; // in seconds

91/110

Other Standard
Library Classes

std::pair 1/2

std::pair (<utility>) class couples together a pair of values, which may be of
different types

Construct a std::pair
• std::pair pair1(value1, value2) , C++17 CTAD
• std::pair<T1, T2> pair2(value1, value2)
• std::pair<T1, T2> pair3 = {value1, value2}
• auto pair4 = std::make_pair(value1, value2)

Data members:
• first access first field
• second access second field

Methods:
• comparison ==, <, >, ≥, ≤
• swap std::swap

92/110

std::pair 2/2

include <utility>

std::pair<int, std::string> pair1(3, "abc");
std::pair<int, std::string> pair2 = { 4, "zzz" };
auto pair3 = std::make_pair(3, "hgt");

cout << pair1.first; // print 3
cout << pair1.second; // print "abc"

std::swap(pair1, pair2);
cout << pair2.first; // print "zzz"
cout << pair2.second; // print 4

cout << (pair1 > pair2); // print 1

Note: std::pair is not trivially copyable
93/110

std::tuple 1/3

std::tuple (<tuple>) is a fixed-size collection of heterogeneous values. It is a
generalization of std::pair . It allows any number of values

Construct a std::tuple of size 3
include <tuple>
std::tuple tuple1(value1, value2, value3); // C++17 CTAD
std::tuple<T1, T2, T3> tuple2(value1, value2, value3);
std::tuple<T1, T2, T3> tuple3 = {value1, value2, value3};
auto tuple4 = std::make_tuple(value1, value2, value3);

Get data members
std::get<I>(tuple); // returns the I-th value of the tuple
std::get<type>(tuple); // returns the tuple element with given type

// (compiles only if that type is unique)

Other methods: comparison ==, <, >, ≥, ≤ , swap std::swap
94/110

std::tuple 2/3

• auto t3 = std::tuple_cat(t1, t2)
concatenate two tuples

• const int size = std::tuple_size<TupleT>::value
returns the number of elements in a tuple at compile-time

• using T = typename std::tuple_element<I, TupleT>::type obtains the
type of the specified element

• std::tie(value1, value2, value3) = tuple
creates a tuple of references to its arguments

• std::ignore
an object of unspecified type such that any value can be assigned to it with no
effect 95/110

std::tuple 3/3

include <tuple>
std::tuple<int, float, char> f() { return {7, 0.1f, 'a'}; }

std::tuple<int, char, float> tuple1(3, 'c', 2.2f);
auto tuple2 = std::make_tuple(2, 'd', 1.5f);

cout << std::get<0>(tuple1); // print 3
cout << std::get<1>(tuple1); // print 'c'
cout << std::get<2>(tuple1); // print 2.2f
cout << (tuple1 > tuple2); // print true

auto concat = std::tuple_cat(tuple1, tuple2);
cout << std::tuple_size<decltype(concat)>::value; // print 6

using T = std::tuple_element<4, decltype(concat)>::type; // T is int
int value1; float value2;
std::tie(value1, value2, std::ignore) = f(); 96/110

std::variant 1/3

<variant> C++17
std::variant represents a type-safe union as the corresponding objects know
which type is currently being held

It can be indexed by:
• std::get<index>(variant) an integer
• std::get<type>(variant) a type

include <variant>

std::variant<int, float, bool> v(3.3f);
auto x = std::get<1>(v); // return 3.3f
auto y = std::get<float>(v); // return 3.3f
// std::get<0>(v); // member 0 is not active, run-time exception!!

97/110

std::variant 2/3

Another useful method is index() which returns the position of the type currently
held by the variant

include <variant>

std::variant<int, float, bool> v(3.3f);

cout << v.index(); // return 1

v = true; // not 'v' holds a bool
cout << v.index(); // return 2

98/110

std::variant + Visitor 3/3

It is also possible to query the index at run-time depending on the type currently being
held by providing a visitor
include <variant>

struct Visitor {
void operator()(int& value) { value *= 2; }

void operator()(float& value) { value += 3.0f; } // <--

void operator()(bool& value) { value = true; }
};

std::variant<int, float, bool> v(3.3f);

std::visit(v, Visitor{});

cout << std::get<float>(v); // 6.3f
99/110

std::optional 1/2

<optional> C++17
std::optional provides facilities to represent potential “no value” states

As an example, it can be used for representing the state when an element is not found
in a set

include <optional>

std::optional<int> find(const std::vector<int>& vector, int value_to_search) {
for (int i = 0; i < vector.size(); i++) {

if (vector[i] == value_to_search)
return i;

}
return {}; // std::nullopt;

}

100/110

std::optional 2/2

include <optional>

char set[] = "sdfslgfsdg";
auto x = find(set, 'a'); // 'a' is not present
if (!x)

cout << "not found";
if (!x.has_value())

cout << "not found";

auto y = find(set, 'l');
cout << *y << " " << y.value(); // print '4' '4'

x.value_or('A'); // returns 'A'
y.value_or('A'); // returns 'A'

101/110

std::any

<any> C++17
std::any holds arbitrary values and provides type-safety

include <any>

std::any var = 1; // int
cout << var.type().name(); // print 'i'

cout << std::any_cast<int>(var);
// cout << std::any_cast<float>(var); // exception!!

var = 3.14; // double
cout << std::any_cast<double>(var);

var.reset();
cout << var.has_value(); // print 'false' 102/110

Filesystem Library

Filesystem Library

C++17 introduces abstractions and facilities for performing operations on file systems
and their components, such as paths, files, and directories

• Follow the Boost filesystem library
• Based on POSIX
• Fully-supported from clang 7, gcc 8, etc.
• Work on Windows, Linux, Android, etc.

103/110

Basic concepts

• file: a file system object that holds data
◦ directory a container of directory entries

◦ hard link associates a name with an existing file

◦ symbolic link associates a name with a path

◦ regular file a file that is not one of the other file types

• file name: a string of characters that names a file. Names . (dot) and ..
(dot-dot) have special meaning at library level

• path: sequence of elements that identifies a file
◦ absolute path: a path that unambiguously identifies the location of a file

◦ canonical path: an absolute path that includes no symlinks, . or .. elements

◦ relative path: a path that identifies a file relative to some location on the file system
104/110

path Object

A path object stores the pathname in native form

include <filesystem> // required
namespace fs = std::filesystem;

fs::path p1 = "/usr/lib/sendmail.cf"; // portable format
fs::path p2 = "C:\\users\\abcdef\\"; // native format on Windows

cout << "p1: " << p1; // /usr/lib/sendmail.cf
cout << "p2: " << p2; // C:\users\abcdef\

out << "p3: " << p2 / "xyz\\"; // C:\users\abcdef\xyz\

105/110

path Methods

Decomposition (member) methods:

• Return root-name of the path
root_name()

• Return path relative to the root path
relative_path()

• Return the path of the parent path
parent_path()

• Return the filename path component
filename()

• Return the file extension path component
extension()

106/110

Filesystem Methods - Query

• Check if a file or path exists
exists(path)

• Return the file size
file_size(path)

• Check if a file is a directory
is_directory(path)

• Check if a file (or directory) is empty
is_empty(path)

• Check if a file is a regular file
is_regular_file(path)

• Returns the current path
current_path() 107/110

Directory Iterators

Iterate over files of a directory (recursively/non-recursively)

include <filesystem>

namespace fs = std::filesystem;

for(auto& path : fs::directory_iterator("/usr/tmp/"))
cout << path << '\n';

for(auto& path : fs::recursive_directory_iterator("/usr/tmp/"))
cout << path << '\n';

108/110

Filesystem Methods - Modify

• Copy files or directories
copy(path1, path2)

• Copy files
copy_file(src_path, src_path, [fs::copy_options::recursive])

• Create new directory
create_directory(path)

• Remove a file or empty directory
remove(path)

• Remove a file or directory and all its contents, recursively
remove_all(path)

• Rename a file or directory
rename(old_path, new_path) 109/110

Examples

include <filesystem> // required
namespace fs = std::filesystem;
fs::path p1 = "/usr/tmp/my_file.txt";

cout << fs::exists(p1); // true
cout << p1.parent_path(p1); // "/usr/tmp/"
cout << p1.filename(); // "my_file.txt"
cout << p1.stem(); // "my_file"
cout << p1.extension(); // "txt"
cout << fs::is_directory(p1); // false
cout << fs::is_regular_file(p1); // true

fs::create_directory("/my_dir/");
fs::copy(p1.parent_path(), "/my_dir/", fs::copy_options::recursive);
fs::copy_file(p1, "/my_dir/my_file2.txt");
fs::remove(p1);
fs::remove_all(p1.parent_path());

110/110

	Views Introduction and std::span
	std::span

	std::mdspan
	std::extends
	Layout
	Accessor

	I/O Stream
	Manipulator
	ofstream/ifstream

	Strings and std::print
	std::string
	Conversion from/to Numeric Values
	std::string_view
	std::format
	std::print

	Math Libraries
	<cmath> Math Library
	<limits> Numerical Limits
	<numbers> Mathematical Constants

	Random Number
	Basic Concepts
	C++ <random>
	Seed
	PRNG Period and Quality
	Distribution
	Recent Algorithms and Performance
	Quasi-random
	True Random Number Generator (TRNG)

	Time Measuring
	Wall-Clock Time
	User Time
	System Time

	Other Standard Library Classes
	std::pair
	std::tuple
	std::variant
	std::optional
	std::any

	Filesystem Library
	Query Methods
	Modify Methods

