Modern C4+

Programming

16. CoDE CONVENTIONS

PART 11

Federico Busato

2026-01-06

Table of Contents

auto

Templates and Type Deduction

Control Flow
m Redundant Control Flow
m if/else
m Comparison
m switch

m for/while

1/78

Table of Contents

B namespace
® using namespace Directive
m Anonymous/Unnamed Namespace
m Namespace and Class Design

m Style

H Modern C++
m Keywords
m Features
m Class

m Library
2/78

Table of Contents

@ Maintainability
m Code Comprehension
m Functions
m Template and Deduction

m Library

Portability

3/78

Table of Contents

B Naming
m Entities
m Literals
m Variables
m Functions
m Style Conventions

m Enforcing Naming Styles

4/78

Table of Contents

El Readability and Formatting
m Horizontal Spacing
m Pointers/References
m Vertical Spacing
m Braces
m Type Decorators
m Reduce Code Verbosity

m Other Issues

5/78

Table of Contents

il Code Documentation and Comments
m Function Documentation
m Comment Syntax

m File Documentation

6/78

auto

auto

* Use auto to avoid type names that are noisy, obvious, or unimportant

auto array = new int[10];
auto var = static_cast<int>(var); LLVM, GOOGLE

lambdas, iterators, template expressions
unreal (only)

* Do not excessively use auto for variable types. Use auto only when the
left type is easy to deduce looking at the right expression GOOGLE

= Don’'t use auto when the type would be deduced to be a pointer type
auto* v = new int; CHROMIUM

= Use auto for return type deduction only with small/simple functions and lambda
expressions GOOGLE 7/78

https://llvm.org/docs/CodingStandards.html#use-auto-type-deduction-to-make-code-more-readable
https://google.github.io/styleguide/cppguide.html#Type_deduction
https://google.github.io/styleguide/cppguide.html#Type_deduction
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#do-not-use-to-deduce-a-raw-pointer
https://google.github.io/styleguide/cppguide.html#Type_deduction

Templates and Type
Deduction

Templates and Type Deduction

% Avoid complicated template programming GOOCLE

* Prefer automatic template deduction f(0) instead of £<int>(0)

» Use class template argument deduction (CTAD) only with templates that provide
at least one explicit deduction guide GOOCGLE

= Use trailing return types only where using the ordinary syntax is impractical or

much less readable GOOGLE, WEBKIT
int foo(int x) instead of auto foo(int x) -> int

8/78

https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
https://google.github.io/styleguide/cppguide.html#CTAD
https://google.github.io/styleguide/cppguide.html#trailing_return
https://webkit.org/code-style-guidelines/#function-return-arrow

Templates and Type Deduction

= Declare template specializations in the same file as the primary template they
specialize Hic
template<typename T>
£0); // primary template

template<>
f<int>();

= Do not place spaces between the identifier template and its angle brackets
WEBKIT

template<typename U> struct Bar { };

9/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/templates
https://webkit.org/code-style-guidelines/#spacing-template

Control Flow

Control Flow

% Limit control flow complexity (cyclomatic/cognitive complexity)

* Avoid goto 1OS, CorRECPP

10/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/definitions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#readability/function-cognitive-complexity.html
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es76-avoid-goto

Redundant Control Flow

* Avoid redundant control flow (see next slides) CLANG-TIDY, CORECPP
- Do not use else after a return / break LLVM, WEBKIT, CLANG-TIDY
- Avoid comparing boolean condition to true/false MOZILLA

- Avoid return true/return false pattern

- Merge multiple conditional statements

11/78

https://clang.llvm.org/extra/clang-tidy/checks/#readability/simplify-boolean-expr.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f56-avoid-unnecessary-condition-nesting
https://llvm.org/docs/CodingStandards.html#don-t-use-else-after-a-return
https://webkit.org/code-style-guidelines/#linebreaking-else-braces
https://clang.llvm.org/extra/clang-tidy/checks/#readability/else-after-return.html
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices

Redundant Control Flow

if (condition) { // BAD

< bodyl >
return; /) <--
i
else // <-- redundant
if (condition) { // GOOD
< bodyl >
return;
}
< body2 >

if (condition == true) // BAD

if (condition) // GOOD

12/78

Redundant Control Flow

if (condition) // BAD
return true;
else

return false;

return condition; // GOOD

if (conditionil) {
if (condition2) {
if (condition3) { // BAD

if (conditionl && condition2 && condition3) { // GOOD

bool condition4 = conditionl && condition2 && condition3;
if (condition4) { // GOOD

13/78

Control Flow - if/else

¥ The if and else keywords belong on separate lines

if (cl) <statementl>; else <statement2>; // BAD
GOOGLE, WEBKIT

= Don't use the ternary operator (?7:) as a sub-expression
@''=07? ((GG'=07 1: 0 : O0; Hic

14/78

https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://webkit.org/code-style-guidelines/#linebreaking-else-braces
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions

Control Flow - Comparison

% Tests for null/non-null, and zero/non-zero should all be done with
equality comparisons Hic

if (!ptr) if (ptr == nullptr)
return; return;

if (!count) if (count == 0)
return; return;

% Prefer (ptr == nullptr) and x > 0 over (nullptr == ptr) and
0 <x CHROMIUM

15/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/standard-conversions
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://webkit.org/code-style-guidelines/#zero-comparison
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es87-dont-add-redundant--or--to-conditions
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#code-formatting

Control Flow - switch

* Prefer switch to multiple if -statement CoreCprp

* Don’t use default labels in fully covered switch over enumerations
LLVM, CoreCprpP

* In all other cases, switch statements should always have a default case
GoocGLE, UNREAL, Hic, CLANG-TIDY

16/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es70-prefer-a-switch-statement-to-an-if-statement-when-there-is-a-choice
https://llvm.org/docs/CodingStandards.html#don-t-use-default-labels-in-fully-covered-switches-over-enumerations
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es79-use-default-to-handle-common-cases-only
https://google.github.io/styleguide/cppguide.html#Switch_Statements
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/statements
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/switch-missing-default-case.html

Control Flow - switch - Style

= case blocks in switch statements are indented twice GOOGLE
switch (var) {
case 0: {
Foo();

break;

= A case label should line up with its switch statement. The case statement is
indented WEBKIT

switch (var) {

case O:
Foo();
break;

}

17/78

https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://webkit.org/code-style-guidelines/#indentation-case-label

Control Flow - for/while 1/3

% Use range-based for loops whenever possible
LLVM, UNREAL, CLANG-TIDY, CORECPP1, CORECPP,, CORECPP3

* Prefer a for -statement to a while -statement when there is an obvious loop
variable CoreCppP

variable CORECPP

= Avoid do-while loop CoORrRECPP

https://llvm.org/docs/CodingStandards.html#use-range-based-for-loops-wherever-possible
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/loop-convert.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es55-avoid-the-need-for-range-checking
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es71-prefer-a-range-for-statement-to-a-for-statement-when-there-is-a-choice
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p3-express-intent
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es72-prefer-a-for-statement-to-a-while-statement-when-there-is-an-obvious-loop-variable
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es73-prefer-a-while-statement-to-a-for-statement-when-there-is-no-obvious-loop-variable
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es75-avoid-do-statements

Control Flow - for/while

= Use early exits (continue , break , return) to simplify the code
LLVM, CoreCprpP

for (<conditioni>) { // BAD
if (<condition2>)

for (<conditioni1>) { // GOOD
if (!<condition2>)

continue;

19/78

https://llvm.org/docs/CodingStandards.html#use-early-exits-and-continue-to-simplify-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f56-avoid-unnecessary-condition-nesting

Control Flow - for/while

* Turn predicate loops into predicate functions LLVM, CoreCpp

bool var = ...;
for (<loop_condition1>) { // should be an ezternal
if (<condition2>) { // function
var = ...

break;

20/78

https://llvm.org/docs/CodingStandards.html#turn-predicate-loops-into-predicate-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es77-minimize-the-use-of-break-and-continue-in-loops

namespace

Namespace

% Always place code in a namespace to avoid global namespace pollution
GOOGLE

% Do not use namespace aliases namespace nsA = other_namespace at
namespace/global scope in header files except in explicitly marked
internal-only namespaces GOOGLE, MOZILLA

% Do not declare anything in the namespace std
GOOGLE, SEI CERT, CLANG-TIDY, CORECPP
% Do not use using namespace declarations of any kind to import names in the
std namespace WEBKIT

* Do not use inline namespaces GOOGLE?1/78

https://google.github.io/styleguide/cppguide.html#Namespaces
https://google.github.io/styleguide/cppguide.html#Namespaces
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-namespaces
https://google.github.io/styleguide/cppguide.html#Namespaces
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL58-CPP.+Do+not+modify+the+standard+namespaces
https://clang.llvm.org/extra/clang-tidy/checks/#cert/dcl58-cpp.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sl3-do-not-add-non-standard-entities-to-namespace-std
https://webkit.org/code-style-guidelines/#using-in-cpp
https://google.github.io/styleguide/cppguide.html#Namespaces

using namespace Directive

% Avoid using namespace -directives, especially at global scope

// if 'header.hpp' contains
// 'using namespace std;'
auto f(float a) { return abs(a) * 2; } // f(3.5) returns 7 instead of 6

#anclude <cmath>
#include "header.hpp"

* Limit using namespace -directives at local scope and prefer explicit

namespace entities declarations GOOGLE, UNREAL, Hic, CLANG-TIDY

using namespace is allowed in implementation files in nested namespaces

WEBKIT

https://llvm.org/docs/CodingStandards.html#do-not-use-using-namespace-std
https://google.github.io/styleguide/cppguide.html#Namespaces
https://webkit.org/code-style-guidelines/#using-in-headers
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf7-dont-write-using-namespace-at-global-scope-in-a-header-file
https://google.github.io/styleguide/cppguide.html#Namespaces
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://clang.llvm.org/extra/clang-tidy/checks/#google/build-using-namespace.html
https://webkit.org/code-style-guidelines/#using-nested-namespaces

Anonymous/Unnamed Namespace

% Avoid anonymous namespaces/ static in headers

= anonymous namespace Vs. static
- anonymous namespaces instead of static everywhere
- anonymous namespaces only for struct / class declaration, static
otherwise (easy identification) LLVM, MoziLLa, pOS

* Anonymous namespaces and static in source files:
Items local to a source file (e.g. .cpp) file should be wrapped in an anonymous
namespace/marked static . Anonymous namespaces/ static restrict symbols visibility
to the translation unit, improving function call cost and reduce the size of entry point
tables GooGLE, CHroMIUM, CORECPP, Hic, nOSp3/78

https://google.github.io/styleguide/cppguide.html#Internal_Linkage
https://micro-os-plus.github.io/develop/coding-style/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL59-CPP.+Do+not+define+an+unnamed+namespace+in+a+header+file
https://clang.llvm.org/extra/clang-tidy/checks/#google/build-namespaces.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf21-dont-use-an-unnamed-anonymous-namespace-in-a-header
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://clang.llvm.org/extra/clang-tidy/checks/#misc/use-anonymous-namespace.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf22-use-an-unnamed-anonymous-namespace-for-all-internalnon-exported-entities
https://llvm.org/docs/CodingStandards.html#anonymous-namespaces
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#anonymous-namespaces
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Internal_Linkage
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#unnamed-namespaces
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf22-use-an-unnamed-anonymous-namespace-for-all-internalnon-exported-entities
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://micro-os-plus.github.io/develop/coding-style/

Namespace and Class Design

% All helper functions and operators of a class need to belong to the same
namespace of the class

* Prefer free functions in namespaces instead of classes, avoid global scope
functions GOOGLE

Namespaces & Interface Principle 24/78

https://google.github.io/styleguide/cppguide.html#Nonmember,_Static_Member,_and_Global_Functions
http://gotw.ca/publications/mill08.htm

Style 1/2

* The content of namespaces is not indented LLVM, GooGLE, WEBKIT

namespace ns {
void £ {}

}

* Close namespace declarations LLVM, GooGLE, WEBKIT, CLANG-TIDY

} // namespace <namespace_tidentifier>
} // namespace (for anonymous namespaces)

= Namespaces should have unique names based on the project name GOOGLE

https://llvm.org/docs/CodingStandards.html#namespace-indentation
https://google.github.io/styleguide/cppguide.html#Namespace_Formatting
https://webkit.org/code-style-guidelines/#indentation-namespace
https://llvm.org/docs/CodingStandards.html#use-namespace-qualifiers-to-implement-previously-declared-functions
https://google.github.io/styleguide/cppguide.html#Namespaces
https://webkit.org/code-style-guidelines/#indentation-namespace
https://clang.llvm.org/extra/clang-tidy/checks/#llvm/namespace-comment.html
https://google.github.io/styleguide/cppguide.html#Namespaces

2/2

= Prefer single-line nested namespace declarations nsi1::ns2 C++17
GOOGLE, MOZILLA

= Minimize use of nested namespaces CHROMIUM

= Namespaces can match hierarchy with file system hierarchy for consistency

include/

Lg,my_project/
core.hpp
detail/
Lg,helper.hpp

namespace my_project::detail

26/78

Using namespaces effectively

https://google.github.io/styleguide/cppguide.html#Namespaces
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-namespaces
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#named-namespaces
https://biowpn.github.io/bioweapon/2024/06/05/using-namespaces-effectively.html

Modern C4+

Modern C++

Use C++ over pure C and
use modern C++4 wherever possible

27/78

Modern C++ Keywords 1/3

% Use constexpr C-++11 variables to define true constants (instead of macro)
GoOGLE, WEBKIT, CORECPP1, CORECPP;

% Use consteval C++20 function to ensure compile-time evaluation
GOOGLE

% Use constinit C+-+20 to ensure constant initialization for non-constant
variables GOOGLE

% static_assert compile-time assertion UNREAL, Hic

https://google.github.io/styleguide/cppguide.html#Use_of_constexpr
https://webkit.org/code-style-guidelines/#names-const-to-define
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es25-declare-an-object-const-or-constexpr-unless-you-want-to-modify-its-value-later-on
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con5-use-constexpr-for-values-that-can-be-computed-at-compile-time
https://google.github.io/styleguide/cppguide.html#Use_of_constexpr
https://google.github.io/styleguide/cppguide.html#Use_of_constexpr
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#staticassert
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations

2/3

Modern C++ Keywords

% Prefer enum class C++11 instead of plain enum C++11

* Use auto C++11 to avoid type names that are noisy, obvious, or

unimportant
auto array = new int[10];

auto var = static_cast<int>(var);

LLVM, GoogGLE, Hic, CLANG-TIDY, CORECPP

(only for lambdas, iterators, template expressions) ~ UNI

% nullptr C++11 instead of 0 or NULL for pointers

29/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#strongly-typedenums
https://micro-os-plus.github.io/develop/naming-conventions/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum3-prefer-class-enums-over-plain-enums
https://llvm.org/docs/CodingStandards.html#use-auto-type-deduction-to-make-code-more-readable
https://google.github.io/styleguide/cppguide.html#Google
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-auto.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es11-use-auto-to-avoid-redundant-repetition-of-type-names
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#auto
https://google.github.io/styleguide/cppguide.html#0_and_nullptr/NULL
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#nullptr
https://webkit.org/code-style-guidelines/#zero-null
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-nullptr.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null

Modern C++ Keywords

* Use the explicit keyword for conversion operators C++11 and
constructors. Do not define implicit conversions GOOGLE, MoziLLa, uOS

% Use using C+-+11 instead typedef MoziLLA, CLANG-TIDY, CORECPP

* Avoid throw function specifier. Use noexcept C+-+11 instead
MIicROSOFT BLOG

30/78

https://google.github.io/styleguide/cppguide.html#Implicit_Conversions
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c
https://micro-os-plus.github.io/develop/coding-style/
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-using.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t43-prefer-using-over-typedef-for-defining-aliases
https://devblogs.microsoft.com/oldnewthing/20180928-00/?p=99855

Modern C++ Features 1/2

% lambda expression C++11 UNREAL

% move semantic C+-+11 UNREAL

% Use range-based for loops whenever possible C++11
LLVM, UNREAL, CLANG-TIDY, CORECPP;, CORECPP,, CORECPP3

* Prefer uniform (brace) initialization C++11 when it cannot be confused with
std::initializer_list CHROMIUM

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#lambdasandanonymousfunctions
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#movesemantics
https://llvm.org/docs/CodingStandards.html#use-range-based-for-loops-wherever-possible
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#range-basedfor
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/loop-convert.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es55-avoid-the-need-for-range-checking
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es71-prefer-a-range-for-statement-to-a-for-statement-when-there-is-a-choice
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p3-express-intent
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#variable-initialization

Modern C++ Features 2/2

* static_cast, reinterpret_cast, const_cast, std::bit_cast C++20,

instead of old style cast (type) LLVM, GooGLE, OS, Hic, CLANG-TIDY

* Use [[deprecated]] C++14 / [[noreturn]] C++11 / [[nodiscard]]
C++17 to indicate deprecated functions / that do not return / result should not
be discarded CLANG-TIDY

* Use = delete C+-+11 to mark deleted functions

= Replace SFINAE with concepts C+-+20 CLANG-TIDY

= Use structure binding C++17 32/78

https://llvm.org/docs/CodingStandards.html#prefer-c-style-casts
https://google.github.io/styleguide/cppguide.html#Casting
https://micro-os-plus.github.io/develop/coding-style/
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/pro-type-cstyle-cast.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-nodiscard.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-constraints.html
https://clang.llvm.org/extra/clang-tidy/checks/#use-designated-initializers.html

Modern C+4+ Features - Class

* Always use override C++11 and final function member keywords
GOOGLE, WEBKIT, MozILLA, UNREAL, Hic, CLANG-TIDY, CORECPP

* Use = default C+-+11 constructors

33/78

https://google.github.io/styleguide/cppguide.html#Inheritance
https://webkit.org/code-style-guidelines/#override-methods
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#apidesignguidelines
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/derived-classes
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-override.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c139-use-final-on-classes-sparingly

Modern C++ Features - Class 2/2

* Use braced direct-list-initialization or copy-initialization C-++11 for setting

struct A {
int x = 3; // copy-initialization
int x { 3 }; // direct-list-initialization

I3

= Replaces explicit calls to the constructor in a return with a braced initializer list
CLANG-TIDY

Foo bar() { return Foo(3); }
Foo bar() { return {3}; }

34/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#defaultmemberinitializers
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/return-braced-init-list.html

Modern C++ Library

% Avoid C-Style memory management malloc()/free() and use new/delete
CORECPP, CLANG-TIDY

% Except int, Use fixed-width integer type C++11 (e.g. int64_t, int8_t,

etc.) CHROMIUM, UNREAL, GOOGLE, HIC, pOS, CLANG-TIDY
» Use std::print C++23 CLANG-TIDY
= Uses modern type traits C+-+17 CLANG-TIDY

std::is_integral<T>: :value; // —-=> std::is_integral_v

std: :make_signed<unsigned>::type; // —-—> std::std::make_signed_t
35/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r10-avoid-malloc-and-free
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/no-malloc.html
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#types
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#portablec++code
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#google/runtime-int.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-std-print.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/type-traits.html

Maintainability

Maintainability

% Document code (See code documentation section)

% Don’t optimize without reason CoreCrpP

* Address compiler warnings. Compiler warning messages mean something is

wrong UNREAL

36/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per1-dont-optimize-without-reason
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p5-prefer-compile-time-checking-to-run-time-checking

Maintainability 2/3

* Avoid RTTI (dynamic_cast) and exceptions
LLVM, GOOGLE1, GOOGLE>, MOZILLA1, MOZILLA>, HiC

% Do not use reserved names SEI CERT, CLANG-TIDY

- double underscore followed by any character __var
- single underscore followed by uppercase _VAR

The goto statement shall not be used 1OS, CLANG-TIDY

Code that is not used (commented out) should be deleted nOS

Code should not include unnecessary constructs: variables, types, unreachable
code nOS37/78

https://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-exceptions
https://google.github.io/styleguide/cppguide.html#Exceptions
https://google.github.io/styleguide/cppguide.html#Run-Time_Type_Information__RTTI_
https://firefox-source-docs.mozilla.org/code-quality/coding-style/using_cxx_in_firefox_code.html#using-c-in-mozilla-code
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#don-t-use-exceptions
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL51-CPP.+Do+not+declare+or+define+a+reserved+identifier
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/reserved-identifier.html
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/avoid-goto.html
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/coding-style/

Maintainability

% Do not depend on the order of evaluation for side effects SEI CERT

f(i++, i++);

afi++] = i;

if (a = b)
* Prefer sizeof(variable/value) instead of sizeof (type) GOOGLE
* Avoid octal numbers, e.g. int v = 0010; //8 Hic, unOS

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL59-CPP.+Do+not+define+an+unnamed+namespace+in+a+header+file
https://wiki.sei.cmu.edu/confluence/display/c/EXP45-C.+Do+not+perform+assignments+in+selection+statements
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/assignment-in-if-condition.html
https://google.github.io/styleguide/cppguide.html#sizeof
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/

Maintainability - Code Comprehension

% Write self-documenting code
eg. (x+y-1) /y — ceil_div(x, y) UNREAL
% Use symbolic names instead of literal values in code (don’t use magic numbers)
Hic, CLANG-TIDY, CORECPP

double areal = 3.14 * radius * radius; // BAD
constexpr auto Pi = 3.14; // correct
double area?2 = Pi * radius * radius;

= Use parentheses in expressions to specify the intent of the expression,
especially with mixed operators Hic, pOS, CLANG-TIDY, CORECPP

intr =i+ j *xk-4/5; // BAD
if (G !'=0) && (j '=0) || (k !'=0)) // correct

39/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#guidelines
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://clang.llvm.org/extra/clang-tidy/checks/#readability/magic-numbers.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es45-avoid-magic-constants-use-symbolic-constants
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#readability/math-missing-parentheses.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es41-if-in-doubt-about-operator-precedence-parenthesize

Maintainability - Constants 2/3

% Enforce const -correctness UNREAL
= Pass function arguments by const pointer or reference CoreCrp
= Function members CoORrReCPP

= Use const iteration over containers if the loop isn't intended to modify the
container

= Declare an object const or constexpr unless you want to modify its value

later on CORECPP1, CORECPP2, UNREAL

= but don’t const all the things !, CORECPP
= Pass by- const value: almost useless (copy), ABI break

= const return: useless (copy) CLANG-TIDY, UNREAL

= const data member: disable assignment and copy constructor
= const local variables: verbose, rarely effective

i - 40/78
Don’t const all the things

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#constcorrectness
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con3-by-default-pass-pointers-and-references-to-consts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con2-by-default-make-member-functions-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es25-declare-an-object-const-or-constexpr-unless-you-want-to-modify-its-value-later-on
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con4-use-const-to-define-objects-with-values-that-do-not-change-after-construction
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#constcorrectness
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es50-dont-cast-away-const
https://clang.llvm.org/extra/clang-tidy/checks/#readability/const-return-type.html
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#constcorrectness
https://quuxplusone.github.io/blog/2022/01/23/dont-const-all-the-things/

Maintainability - Functions

% Use assert to document preconditions and assumptions
LLVM, CoreCppP

= Ensure that all statements are reachable for at least one combination of function
inputs Hic

= Prevent using functions that don't accept nullptr CoORrRECPP

#include <cstddef> // std::nullptr_
void f(voidx*);
void f(std::nullptr_t) = delete;

// f(nullptr) // compile error

41/78

https://llvm.org/docs/CodingStandards.html#assert-liberally
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i5-state-preconditions-if-any
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/general
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i12-declare-a-pointer-that-must-not-be-null-as-not_null

Maintainability - Object Semantic

* Prefer RAIl instead of manual resource management
CoRreECPP;, CORECPP>

void f(char* name) {
FILE* input = fopen(name, "r"); // use "ifstream input {name};" instead

if (something) return; // BAD: if something == true,
VA // a file handle is leaked
fclose(input) ;

% Never transfer ownership by a raw pointer (T*) or reference (T&) . Use
object semantics, unique_ptr , etc. CoORECPP

42/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p8-dont-leak-any-resources
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e6-use-raii-to-prevent-leaks
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r32-take-a-unique_ptrwidget-parameter-to-express-that-a-function-assumes-ownership-of-a-widget
https://webkit.org/code-style-guidelines/#singleton-static-member
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i3-avoid-singletons

Maintainability - Template and Deduction

% Avoid complicated template programming GOOGLE

* Be aware of bug-prone deductions

template<typename T, int N>
void f(const T&);

template<typename T>
void £(T); // same of f(T*)

int arrayl[3];
f(array); // call the second funtion, not f(T&)

43/78

https://google.github.io/styleguide/cppguide.html#Template_metaprogramming

Maintainability - Library

* Do not pass an array as a single pointer. Prefer std::span, std::mdspan
CoreCPP

* Prefer core-language features over library facilities, e.g. uint8_t vs.
std: :byte

= Prefer std::array over plain array. It can be also used to return multiple values
of the same type from a function CoreCprpr1, CORECPP;

s Use std::string_view to refer to character sequences CoORECPP

Prefer core-language features over library facilities

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i13-do-not-pass-an-array-as-a-single-pointer
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es27-use-stdarray-or-stack_array-for-arrays-on-the-stack
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array
https://quuxplusone.github.io/blog/2022/10/16/prefer-core-over-library/

Portability

Portability 1/2

% Ensure ISO C++ compliant code. Do not use non-standard extensions
see -Wpedantic Hic, GooGLE;, GOOGLEy, uOS, CORECPP

% Do not use deprecated C+- features, or asm declarations, e.g. register,
__attribute

, throw (function qualifier) Hic

% Do not use reinterpret_cast or union for type punning
Prefer std::bit_cast or std::memcpy CoreCprpr;, CORECPP,, HiC

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/general
https://google.github.io/styleguide/cppguide.html#C++_Version
https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-Cplusplus
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/general
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es49-if-you-must-use-a-cast-use-a-named-cast
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#types
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#portablec++code
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#google/runtime-int.html

Portability

% Don't use long double

* Do not use UTF characters* for portability, prefer ASCII GOOGLE, uOS

* Use the same line ending (e.g. '\n') for all files MoziLLA, CHROMIUM

* Trojan Source attack for introducing invisible vulnerabilities 46/78

https://google.github.io/styleguide/cppguide.html#Non-ASCII_Characters
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Non-ASCII_Characters
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#miscellany
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#formatting-code
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#miscellany
https://pvs-studio.com/en/blog/posts/cpp/0933/

Naming

“Beyond basic mathematical aptitude, the difference be-
tween good programmers and great programmers is verbal
ability”

Marissa Mayer

47/78

General Notes on Naming 1/2

* Naming is hard. Most of the time, code is shared with other developers. It is

worth spending a few seconds to find the right name
* Think about the purpose to choose names
* Adopt names commonly used in real contexts (outside the code)
* Don’t use the same name for different things. Use a specific name everywhere

= Prefer single English word to implementation-focused, e.g.
UpdateConfigFile() — save()

= Use natural word pair, e.g. create()/destroy() , open()/close() ,
begin()/end() , source()/destination() nOS

https://micro-os-plus.github.io/develop/naming-conventions/

General Notes on Naming

= Don't overdecorate, e.g. Base/Impl, Factory/Singleton

Don't list the content, e.g. NameAndAddress — ContactInfo

= Don't repeat class/enum names, e.g. Employee: :EmployeeName

= Avoid temporal attributes, e.g. PreLoad() , PostLoad()

= Use adjectives to enrich a name, e.g. Name — FullName,b Salary —

AnnualSalary

49/78

Naming is Hard: Let’s Do Better, CppCon 2019, Kate Gregory

https://www.youtube.com/watch?v=MBRoCdtZOYg

Entities Naming

* Abbreviations are generally bad, longer names are better in most cases (don't
be lazy) 1wOS

% Use whole words, except in the rare case where an abbreviation would be more

canonical and easier to understand, e.g. tmp WEBKIT

* Avoid short and very long names. Remember that the average word length in
English is 4.8 CLANG-TIDY

50/78

https://micro-os-plus.github.io/develop/coding-style/
https://webkit.org/code-style-guidelines/#names-full-words
https://clang.llvm.org/extra/clang-tidy/checks/#readability/identifier-length.html

Entities Naming

= Avoid names that are easily misread: similar or hard to pronounce CoreCppP

= Do not abbreviate by deleting letters within a word GOOCLE

then you can follow the existing naming convention scheme GOOGLE

51/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl19-avoid-names-that-are-easily-misread
https://google.github.io/styleguide/cppguide.html#General_Naming_Rules
https://google.github.io/styleguide/cppguide.html#Exceptions_to_Naming_Rules

% Avoid ambiguous characters, o/0/0, I/1/1, s/S/5, Z/2, N/n/h, B/8

eg. hello Hic, 4OS, CORECPP
= Use uppercase for post-fix literals, 1234L, 1234ULL SEI CERT
= Hexadecimal constants should be uppercase, 0x1BA7 AUTOSAR, A2-13-5

(personal) exception: do not mix with uppercase for post-fix literals, 0x1BACULL

= Make literals readable CoreCpp
auto c = 299'792'458; // digit separation
auto interval = 100ms; // using <chromno>

52/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es8-avoid-similar-looking-names
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152241
https://www.autosar.org/fileadmin/standards/R18-03_R1.4.0/AP/AUTOSAR_RS_CPP14Guidelines.pdf
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl11-make-literals-readable

Variables Naming

* The length of a variable should be proportional to the size of the scope that
contains it. For example, i is fine within a loop
GoOGLE, CorRECPP1, CORECPP)

value or multiple values, thus arrays and collections should be plural pOS

int value;
int values[N];

= Use common loop variable names
- i, j, k, 1 used in order

- it for iterators
53/78

https://google.github.io/styleguide/cppguide.html#General_Naming_Rules
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es7-keep-common-and-local-names-short-and-keep-uncommon-and-non-local-names-longer
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl7-make-the-length-of-a-name-roughly-proportional-to-the-length-of-its-scope
https://micro-os-plus.github.io/develop/naming-conventions/

Functions Naming

* Should be descriptive verb (as they represent actions) WEBKIT

* Should describe their action or effect instead of how they are
implemented, e.g. partial_sort() — top_n()

* Functions that return boolean values should start with boolean verbs, like
is, has, should, does pOS

empty() — is_empty()

54/78

https://webkit.org/code-style-guidelines/#names-verb
https://micro-os-plus.github.io/develop/naming-conventions/

Naming Style Conventions

Capital

Camel-Back

Snake

Macro

Uppercase first word letter (sometimes called Pascal style or uppercase
Camel style) (less readable, shorter names)

CapitalStyle

Uppercase first word letter except the first one (less readable, shorter
names)

camelBack

Lower case words separated by single underscore (good readability, longer
names)

snake_style

Upper case words separated by single underscore (sometimes called All

Capitalized or Screaming style) (best readability, longer names)
MACRO_STYLE

55/78

Naming Style Conventions - Variables/Constant

Variable Variable names should be nouns

Constant

Capital style e.g. MyVar

Snake style e.g. my_var
Global variable with g prefix, e.g. gVar

Arguments with a prefix, e.g. aVar

Capital style + k prefix,
e.g. kConstantVar

Snake style e.g. my_var

Macro style e.g. CONSTANT_VAR

LLVM, UNREAL

OPENSTACK

56,78

https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://google.github.io/styleguide/cppguide.html#Variable_Names
https://webkit.org/code-style-guidelines/#names-basic
https://micro-os-plus.github.io/develop/coding-style/
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://google.github.io/styleguide/cppguide.html#Constant_Names
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://micro-os-plus.github.io/develop/coding-style/

Naming Style Conventions - Function

= Camel-back style, e.g. myFunc() LLVM
= Capital style, e.g. MyFunc(GOOGLE, CHROMIUM, MOZILLA, UNREAL
= Snake style, e.g. my_func() WEBKIT, STD, uOS
= Snake style for accessor and mutator methods GOOGLE, CHROMIUM

57/78

https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://google.github.io/styleguide/cppguide.html#Function_Names
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/blink-c++.md#use-for-all-function-names
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://webkit.org/code-style-guidelines/#names-basic
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Function_Names
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#inline-functions

Naming Style Conventions - Enum/Namespace

Enum = Capital style + k GOOGLE

e.g. enum MyEnum { kEnumVarl, kEnumVar2 }

= e prefix MoziLLA

e.g. enum MyEnum { eVarl, eVar2 }

= Capital style LLVM, WEBKIT, UNREAL

e.g. enum MyEnum { EnumVarl, EnumVar2 }

= Snake style #OS

e.g. enum MyEnum { enum_varl, enum_var2 }

Type Should be nouns
= Capital style (including classes, structs, enums, typedefs, template, etc.)

e.g. HelloWorldClass LLVM, GOooGLE, WEBKIT, UNREAL

= Snake style 1OS (class), STDsg/7g

https://google.github.io/styleguide/cppguide.html#Enumerator_Names
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://webkit.org/code-style-guidelines/#names-enum-members
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://micro-os-plus.github.io/develop/coding-style/
https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://google.github.io/styleguide/cppguide.html#Type_Names
https://webkit.org/code-style-guidelines/#names-basic
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions

Naming Style Conventions - Type/Macro/File

Namespace = Snake style, e.g. my_namespace GOOGLE, LLVM, STD

= Capital style, e.g. MyNamespace WEBKIT, UNREAL

Macro Macro style, e.g. MY_MACRO
GOOGLE, STD, UNREAL, WEBKIT, MozILLA, CORECPP

Macro style should be used only for macros
CorReECPP;, CORECPP,, CORECPP3, CORECPPy4

File = Snake style (my_file) GOOGLE

= Capital style (MyFile), could lead Windows/Linux conflicts LLVM

https://google.github.io/styleguide/cppguide.html#Namespace_Names
https://llvm.org/docs/CodingStandards.html#use-namespace-qualifiers-to-implement-previously-declared-functions
https://webkit.org/code-style-guidelines/#names-basic
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://google.github.io/styleguide/cppguide.html#Macro_Names
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://webkit.org/code-style-guidelines/#names-define-constants
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#global-functions-macros-etc
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es32-use-all_caps-for-all-macro-names
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es9-avoid-all_caps-names
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es32-use-all_caps-for-all-macro-names
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es31-dont-use-macros-for-constants-or-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl9-use-all_caps-for-macro-names-only
https://google.github.io/styleguide/cppguide.html#File_Names
https://llvm.org/docs/CodingStandards.html#use-namespace-qualifiers-to-implement-previously-declared-functions

Personal Comment

PERSONAL COMMENT: Macro style needs to be used only for macros to avoid subtle bugs. | prefer
snake style for almost everything because it has the best readability. On the other hand, | don’t want
to confuse typenames and variables, so | use camel style for the former ones. Finally, | also use camel
style for compile-time constants because they are very relevant in my work and | need to quickly

identify them

60/78

Enforcing Naming Styles

Naming style conventions can be also enforced by using tools like

clang-tidy: readability-identifier-naminge

.clang-tidy configuration file

Checks: 'readability-identifier-naming'
HeaderFileExtensions: ['', 'h','hh', 'hpp', 'hxx']
ImplementationFileExtensions: ['c','cc','cpp','cxx']
CheckOptions:

readability-identifier-naming.ClassCase: 'lower_case'

readability-identifier-naming.MacroDefinitionCase: 'UPPER_CASE'

class MyClass {}; // before
#define my_macro

class my_class {}; // after

#define MY_MACRO
61/78

 https://clang.llvm.org/extra/clang-tidy/checks/readability/identifier-naming.html#readability-identifier-naming

Readability and
Formatting

Horizontal Spacing

Limit line length (width) to be at most 80 characters long (or 100, or 120) —
help code view on a terminal LLVM (80), GOOGLE (80), £OS(120)

PERSONAL COMMENT: | was tempted several times to use a line length > 80 to reduce the
number of lines, and therefore improve the readability. Many of my colleagues use split-screens or

even the notebook during travels. A line length of 80 columns is a good compromise for everyone

Is the 80 character limit still relevant in times of widescreen monitors?
62/78

Linus Torvalds on 80 column limit

https://llvm.org/docs/CodingStandards.html#source-code-width
https://google.github.io/styleguide/cppguide.html#Line_Length
https://micro-os-plus.github.io/develop/coding-style/
https://softwareengineering.stackexchange.com/questions/604/is-the-80-character-limit-still-relevant-in-times-of-widescreen-monitors
https://lkml.org/lkml/2020/5/29/1038

Horizontal Spacing

% Use always the same indentation style

- tab — 2 spaces GOOGLE, pOS
- tab — 4 spaces LLVM, WEeBkIT, HiC, PYTHON
- (actual) tab = 4 spaces UNREAL

PERSONAL COMMENT: | worked on projects with both two and four-space tabs. | observed less
bugs due to indentation and better readability with four-space tabs. 'Actual tabs’ breaks the line
length convention and can introduce tabs in the middle of the code, producing a very different

formatting from the original one

Style Guide for Python Code, Guido van Rossum, Barry Warsaw, Alyssa Coghlan i

https://google.github.io/styleguide/cppguide.html#Spaces_vs._Tabs
https://micro-os-plus.github.io/develop/coding-style/
https://llvm.org/docs/CodingStandards.html#whitespace
https://webkit.org/code-style-guidelines/#indentation-no-tabs
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://peps.python.org/pep-0008/
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#tabsandindenting
https://peps.python.org/pep-0008/

Horizontal Spacing

% Separate commands, operators, etc., by a space
LLVM, GOOGLE1, GOOGLE>, WEBKIT, CORECPP

if (axb<10&&c) // BAD
if (a * ¢ < 10 & c) // good

* Prefer consecutive alignment
int varl = ...

long long int longvar2 = ...

= Do not place spaces around unary operators i ++ WEBKIT

= Never put trailing white space or tabs at the end of a line GOOGLE

https://llvm.org/docs/CodingStandards.html#spaces-before-parentheses
https://google.github.io/styleguide/cppguide.html#Horizontal_Whitespace
https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://webkit.org/code-style-guidelines/#spacing
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl15-use-spaces-sparingly
https://webkit.org/code-style-guidelines/#spacing-unary-op
https://google.github.io/styleguide/cppguide.html#Horizontal_Whitespace

Pointers/References

= Declaration of pointer/reference variables or arguments may be placed with the
asterisk/ampersand adjacent to either the type or to the variable name for all

symbols in the same way GOOCLE

= char* c; WEBKIT, CHROMIUM, UNREAL, CORECPP

= char *c;

= char * c;

= Pointer and reference types and variables have no space after the * or &

GOOGLE
char * v; // BAD
auto & v = w; // BAD
* p = 3; // BAD
v. x + 2; // BAD
X=r>y; // BAD

65/78

https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions
https://webkit.org/code-style-guidelines/#pointers-cpp
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#code-formatting
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#generalstyleissues
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl18-use-c-style-declarator-layout
https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions

Vertical Spacing

* Do not write excessive long file

> 500 is too long

> 5,000 is too long

> 10,000 is too long

* Each statement should get its own line

X++;

yt++;

if (condition)
doIt();

What is your threshold for a long source file? 66/78

https://webkit.org/code-style-guidelines/#linebreaking-multiple-statements
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl4-maintain-a-consistent-indentation-style
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl20-dont-place-two-statements-on-the-same-line
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://twitter.com/lefticus/status/1352320798506160129

Vertical Spacing

* Minimize the number of empty rows. The more code that fits on one screen,
the easier it is to follow and understand the control flow of the program

= Close files with a blank line (C98 compatibility) UNREAL

67/78

https://google.github.io/styleguide/cppguide.html#Vertical_Whitespace
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#generalstyleissues

Braces 1/2

* Multi-lines statements and complex conditions require curly braces. Use an

additional boolean variable if possible GOOGLE;, GOOGLE>, WEBKIT
if (cl && ... &&

c2 && ...) { // correct

<statement>
¥

= Curly braces are not required for single-line statements (for, while, if)
LLVM, GOOGLE, WEBKIT

if (c1) { // not mandatory
<statement>

}

= Always use brace for all control statements MoziLLA, CHROMIUM, pOS

68/78

https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://google.github.io/styleguide/cppguide.html#Boolean_Expressions
https://webkit.org/code-style-guidelines/#braces-one-line
https://llvm.org/docs/CodingStandards.html#don-t-use-braces-on-simple-single-statement-bodies-of-if-else-loop-statements
https://google.github.io/styleguide/cppguide.html#Function_Calls
https://webkit.org/code-style-guidelines/#braces-one-line
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#control-structures
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#code-formatting
https://micro-os-plus.github.io/develop/coding-style/

Braces

* Use always the same style for braces
= Same line, aka Kernigham & Ritchie
GOOGLE1, GOOGLE)

//Kernigham & Ritchie // Allman

int main() { int main()
code {
} code
¥

PERSONAL COMMENT: C++ is a very verbose language. Same line convention helps to keep the

code more compact, improving the readability 69/78

https://google.github.io/styleguide/cppguide.html#Function_Declarations_and_Definitions
https://google.github.io/styleguide/cppguide.html#Vertical_Whitespace
https://webkit.org/code-style-guidelines/#braces-function
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl17-use-kr-derived-layout
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#braces
https://webkit.org/code-style-guidelines/#braces-function

Type Decorators

= The same concept applies to const

= const int* West notation GoOOGLE, CORECPP

= int const* East notation AvuTOsAR (RULE AT7-1-3)

PERSONAL COMMENT: | prefer West notation to prevent unintentional cv-qualify
(const/volatile) of a reference or pointer types char &const p , see DCL52-CPP. Never

qualify a reference type with const or volatile

s Prefer the common order of declaration static constexpr int var nOS

70/78

https://google.github.io/styleguide/cppguide.html#Use_of_const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl26-use-conventional-const-notation
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL52-CPP.+Never+qualify+a+reference+type+with+const+or+volatile
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL52-CPP.+Never+qualify+a+reference+type+with+const+or+volatile
https://micro-os-plus.github.io/develop/naming-conventions/

Reduce Code Verbosity

= Use the short name version of built-in types, e.g. WEBKIT

unsigned instead of unsigned int
long long instead of long long int

= Don’t const all the things. Avoid Pass by- const, const return, const

data member, const local variables

Don’t const all the things /78

https://webkit.org/code-style-guidelines/#types-unsigned
https://quuxplusone.github.io/blog/2022/01/23/dont-const-all-the-things/

Other Issues

% Write all code in English, comments included

* Use true, false for boolean variables instead numeric values 0, 1
WEBKIT, CLANG-TIDY

= Boolean expressions at the same nesting level that span multiple lines should have

their operators on the left side of the line instead of the right side WEBKIT
return attribute.name() == srcAttr
|| attribute.name() == lowsrcAttr;

Final note: Most of the formatting guidelines can be forced by using clang-tidy &
and clang-format @
72/78

https://webkit.org/code-style-guidelines/#zero-bool
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-bool-literals.html
https://webkit.org/code-style-guidelines/#indentation-wrap-bool-op
https://clang.llvm.org/extra/clang-tidy/checks/readability/identifier-naming.html
https://clang.llvm.org/docs/ClangFormatStyleOptions.html

Code
Documentation and
Comments

Programmers vs. Documentation

READ THE DOCS

lswerse =) 73/78

Code Documentation

% Comment what the code does and why LLVM, CoreCPP
- Avoid how it is implemented at low level
- All files should report a brief description of their purpose

- Describe classes and methods

* Don’t say in comments what can be clearly stated in code CoRreCppP

* Document each entity (functions, classes, namespaces, definitions, etc.) and
only in the declarations, e.g. header files

74/78

https://llvm.org/docs/CodingStandards.html#commenting
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl2-state-intent-in-comments
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl1-dont-say-in-comments-what-can-be-clearly-stated-in-code

Function Documentation

*

The first sentence (beginning with @brief) is used as an abstract

Document the inputs: @param[in] , @param[in,out] ,, and template
parameters Q@tparam

Document outputs: return value @return and output parameters
@param[out] GOOGLE, UNREAL
Document preconditions: input ranges, impossible values (e.g. nullptr),
status/return values meaning UNREAL
Document program state changes (e.g. static), arguments with lifetime
beyond the duration of the method call (e.g. constructors), performance

Lo 75/78
implications GOOGLE, UNREAL /

https://google.github.io/styleguide/cppguide.html#Function_Comments
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#exampleformatting
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#exampleformatting
https://google.github.io/styleguide/cppguide.html#Function_Comments
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#exampleformatting

Comment Syntax

* Prefer // comment instead of /* */ — prevent bugs and allow string-search

tools like grep to identify valid code lines Hic, pOS

» Use the same style of comment //, ///, //*, //!, etc.

= Multiple lines and single line comments can have different styles
/kk
* commentl
* comment2
*/
/// single line

= 0S++ Doxygen style guide link

= Teaching the art of great documentation, by Google T

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/doxygen-style-guide/
https://developers.googleblog.com/2020/07/teaching-art-of-great-documentation.html

Other Comment Issues

= Use anchors for indicating special issues: TODO, FIXME, BUG, etc.
WEBKIT, CHROMIUM

= Only one space between statement and comment WEBKIT

77/78

https://webkit.org/code-style-guidelines/#comments-eol
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#comment-style
https://webkit.org/code-style-guidelines/#comments-eol

File Documentation

* Any file start with a license (even scripts) GoOGLE, LLVM

= Each file should include

- @author name, surname, affiliation, email
- @date e.g. year and month
% @file the purpose of the file

in both header and source files

78/78

https://google.github.io/styleguide/cppguide.html#File_Comments
https://llvm.org/docs/CodingStandards.html#file-headers

	auto
	Templates and Type Deduction
	Control Flow
	Redundant Control Flow
	if/else
	Comparison
	switch
	for/while

	namespace
	using namespace Directive
	Anonymous/Unnamed Namespace
	Namespace and Class Design
	Style

	Modern C++
	Keywords
	Features
	Class
	Library

	Maintainability
	Code Comprehension
	Functions
	Template and Deduction
	Library

	Portability
	Naming
	Entities
	Literals
	Variables
	Functions
	Style Conventions
	Enforcing Naming Styles

	Readability and Formatting
	Horizontal Spacing
	Pointers/References
	Vertical Spacing
	Braces
	Type Decorators
	Reduce Code Verbosity
	Other Issues

	Code Documentation and Comments
	Function Documentation
	Comment Syntax
	File Documentation

