
Modern C++
Programming
16. Code Conventions

Part II

Federico Busato
2026-01-06



Table of Contents

1 auto

2 Templates and Type Deduction

3 Control Flow
Redundant Control Flow

if/else

Comparison

switch

for/while

1/78



Table of Contents

4 namespace
using namespace Directive

Anonymous/Unnamed Namespace

Namespace and Class Design

Style

5 Modern C++
Keywords

Features

Class

Library
2/78



Table of Contents

6 Maintainability
Code Comprehension

Functions

Template and Deduction

Library

7 Portability

3/78



Table of Contents

8 Naming
Entities

Literals

Variables

Functions

Style Conventions

Enforcing Naming Styles

4/78



Table of Contents

9 Readability and Formatting
Horizontal Spacing

Pointers/References

Vertical Spacing

Braces

Type Decorators

Reduce Code Verbosity

Other Issues

5/78



Table of Contents

10 Code Documentation and Comments
Function Documentation

Comment Syntax

File Documentation

6/78



auto



auto

∗ Use auto to avoid type names that are noisy, obvious, or unimportant
auto array = new int[10];
auto var = static_cast<int>(var); . . . . . . . .LLVM, . . . . . . . . . .Google
lambdas, iterators, template expressions
unreal (only)

∗ Do not excessively use auto for variable types. Use auto only when the
left type is easy to deduce looking at the right expression . . . . . . . . . .Google

• Don’t use auto when the type would be deduced to be a pointer type
auto* v = new int; . . . . . . . . . . . . .Chromium

• Use auto for return type deduction only with small/simple functions and lambda
expressions . . . . . . . . . .Google 7/78

https://llvm.org/docs/CodingStandards.html#use-auto-type-deduction-to-make-code-more-readable
https://google.github.io/styleguide/cppguide.html#Type_deduction
https://google.github.io/styleguide/cppguide.html#Type_deduction
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#do-not-use-to-deduce-a-raw-pointer
https://google.github.io/styleguide/cppguide.html#Type_deduction


Templates and Type
Deduction



Templates and Type Deduction

※ Avoid complicated template programming . . . . . . . . . .Google

∗ Prefer automatic template deduction f(0) instead of f<int>(0)

• Use class template argument deduction (CTAD) only with templates that provide
at least one explicit deduction guide . . . . . . . . . .Google

• Use trailing return types only where using the ordinary syntax is impractical or
much less readable . . . . . . . . . .Google, . . . . . . . . . .Webkit
int foo(int x) instead of auto foo(int x) -> int

8/78

https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
https://google.github.io/styleguide/cppguide.html#CTAD
https://google.github.io/styleguide/cppguide.html#trailing_return
https://webkit.org/code-style-guidelines/#function-return-arrow


Templates and Type Deduction

• Declare template specializations in the same file as the primary template they
specialize . . . . .Hic
template<typename T>
f(); // primary template

template<>
f<int>();

• Do not place spaces between the identifier template and its angle brackets
. . . . . . . . . .Webkit

template<typename U> struct Bar { };

9/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/templates
https://webkit.org/code-style-guidelines/#spacing-template


Control Flow



Control Flow

※ Limit control flow complexity (cyclomatic/cognitive complexity)
. . . . .Hic, . . . . . .µOS, . . . . . . . . . . . . . . . .Clang-Tidy

∗ Avoid goto . . . . . .µOS, . . . . . . . . . . . .CoreCpp

10/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/definitions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#readability/function-cognitive-complexity.html
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es76-avoid-goto


Redundant Control Flow 1/3

∗ Avoid redundant control flow (see next slides) . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp
- Do not use else after a return / break . . . . . . . .LLVM, . . . . . . . . . .Webkit, . . . . . . . . . . . . . . . .Clang-Tidy

- Avoid comparing boolean condition to true/false . . . . . . . . . . .Mozilla

- Avoid return true/return false pattern

- Merge multiple conditional statements

11/78

https://clang.llvm.org/extra/clang-tidy/checks/#readability/simplify-boolean-expr.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f56-avoid-unnecessary-condition-nesting
https://llvm.org/docs/CodingStandards.html#don-t-use-else-after-a-return
https://webkit.org/code-style-guidelines/#linebreaking-else-braces
https://clang.llvm.org/extra/clang-tidy/checks/#readability/else-after-return.html
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices


Redundant Control Flow 2/3

if (condition) { // BAD
< body1 >
return; // <--

}
else // <-- redundant

< body2 >if (condition) { // GOOD
< body1 >
return;

}
< body2 >

if (condition == true) // BAD

if (condition) // GOOD

12/78



Redundant Control Flow 3/3

if (condition) // BAD
return true;

else
return false;

return condition; // GOOD

if (condition1) {
if (condition2) {
if (condition3) { // BAD

if (condition1 && condition2 && condition3) { // GOOD

bool condition4 = condition1 && condition2 && condition3;
if (condition4) { // GOOD

13/78



Control Flow - if/else

∗ The if and else keywords belong on separate lines
if (c1) <statement1>; else <statement2>; // BAD

. . . . . . . . . .Google, . . . . . . . . . .Webkit

• Don’t use the ternary operator ( ?: ) as a sub-expression
(i != 0) ? ((j != 0) ? 1 : 0) : 0; . . . . .Hic

14/78

https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://webkit.org/code-style-guidelines/#linebreaking-else-braces
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions


Control Flow - Comparison

※ Tests for null/non-null , and zero/non-zero should all be done with
equality comparisons . . . . .Hic

(opposite) . . . . . . . . . . .Mozilla, . . . . . . . . . .Webkit, . . . . . . . . . . . .CoreCpp
if (!ptr)

return;
if (!count)

return;

if (ptr == nullptr)
return;

if (count == 0)
return;

※ Prefer (ptr == nullptr) and x > 0 over (nullptr == ptr) and
0 < x . . . . . . . . . . . . .Chromium

15/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/standard-conversions
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://webkit.org/code-style-guidelines/#zero-comparison
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es87-dont-add-redundant--or--to-conditions
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#code-formatting


Control Flow - switch

∗ Prefer switch to multiple if -statement . . . . . . . . . . . .CoreCpp

∗ Don’t use default labels in fully covered switch over enumerations
. . . . . . . . .LLVM, . . . . . . . . . . . .CoreCpp

∗ In all other cases, switch statements should always have a default case
. . . . . . . . . .Google, . . . . . . . . . .Unreal, . . . . .Hic, . . . . . . . . . . . . . . . .Clang-Tidy

16/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es70-prefer-a-switch-statement-to-an-if-statement-when-there-is-a-choice
https://llvm.org/docs/CodingStandards.html#don-t-use-default-labels-in-fully-covered-switches-over-enumerations
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es79-use-default-to-handle-common-cases-only
https://google.github.io/styleguide/cppguide.html#Switch_Statements
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/statements
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/switch-missing-default-case.html


Control Flow - switch - Style

• case blocks in switch statements are indented twice . . . . . . . . . .Google
switch (var) {

case 0: {
Foo();
break;

}
}

• A case label should line up with its switch statement. The case statement is
indented . . . . . . . . . .Webkit
switch (var) {
case 0:

Foo();
break;

}
17/78

https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://webkit.org/code-style-guidelines/#indentation-case-label


Control Flow - for/while 1/3

※ Use range-based for loops whenever possible
. . . . . . . . .LLVM, . . . . . . . . . .Unreal, . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2, . . . . . . . . . . . .CoreCpp3

∗ Prefer a for -statement to a while -statement when there is an obvious loop
variable . . . . . . . . . . . .CoreCpp

∗ Prefer a while -statement to a for -statement when there is no obvious loop
variable . . . . . . . . . . . .CoreCpp

• Avoid do-while loop . . . . . . . . . . . .CoreCpp

18/78

https://llvm.org/docs/CodingStandards.html#use-range-based-for-loops-wherever-possible
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/loop-convert.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es55-avoid-the-need-for-range-checking
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es71-prefer-a-range-for-statement-to-a-for-statement-when-there-is-a-choice
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p3-express-intent
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es72-prefer-a-for-statement-to-a-while-statement-when-there-is-an-obvious-loop-variable
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es73-prefer-a-while-statement-to-a-for-statement-when-there-is-no-obvious-loop-variable
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es75-avoid-do-statements


Control Flow - for/while 2/3

• Use early exits ( continue , break , return ) to simplify the code
. . . . . . . . .LLVM, . . . . . . . . . . . .CoreCpp

for (<condition1>) { // BAD
if (<condition2>)

...
}for (<condition1>) { // GOOD

if (!<condition2>)
continue;

...
}

19/78

https://llvm.org/docs/CodingStandards.html#use-early-exits-and-continue-to-simplify-code
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f56-avoid-unnecessary-condition-nesting


Control Flow - for/while 3/3

∗ Turn predicate loops into predicate functions . . . . . . . . .LLVM, . . . . . . . . . . . .CoreCpp
bool var = ...;
for (<loop_condition1>) { // should be an external

if (<condition2>) { // function
var = ...
break;

}

20/78

https://llvm.org/docs/CodingStandards.html#turn-predicate-loops-into-predicate-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es77-minimize-the-use-of-break-and-continue-in-loops


namespace



Namespace

※ Always place code in a namespace to avoid global namespace pollution
. . . . . . . . . .Google

※ Do not use namespace aliases namespace nsA = other_namespace at
namespace/global scope in header files except in explicitly marked
internal-only namespaces . . . . . . . . . . .Google, . . . . . . . . . . .Mozilla

※ Do not declare anything in the namespace std

. . . . . . . . . . .Google, . . . . . . . . . . . .SEI Cert, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp

※ Do not use using namespace declarations of any kind to import names in the
std namespace . . . . . . . . . .Webkit

∗ Do not use inline namespaces . . . . . . . . . .Google21/78

https://google.github.io/styleguide/cppguide.html#Namespaces
https://google.github.io/styleguide/cppguide.html#Namespaces
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-namespaces
https://google.github.io/styleguide/cppguide.html#Namespaces
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL58-CPP.+Do+not+modify+the+standard+namespaces
https://clang.llvm.org/extra/clang-tidy/checks/#cert/dcl58-cpp.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sl3-do-not-add-non-standard-entities-to-namespace-std
https://webkit.org/code-style-guidelines/#using-in-cpp
https://google.github.io/styleguide/cppguide.html#Namespaces


using namespace Directive

※ Avoid using namespace -directives, especially at global scope
. . . . . . . .LLVM, . . . . . . . . . .Google, . . . . . . . . . .Webkit, . . . . . . . . . .Unreal, . . . .Hic, . . . . . .µOS, . . . . . . . . . . . .CoreCpp

# include <cmath> // if 'header.hpp' contains
# include "header.hpp" // 'using namespace std;'
auto f(float a) { return abs(a) * 2; } // f(3.5) returns 7 instead of 6

∗ Limit using namespace -directives at local scope and prefer explicit
namespace entities declarations . . . . . . . . . .Google, . . . . . . . . . .Unreal, . . . . .Hic, . . . . . . . . . . . . . . . .Clang-Tidy

• using namespace is allowed in implementation files in nested namespaces
. . . . . . . . . .Webkit

22/78

https://llvm.org/docs/CodingStandards.html#do-not-use-using-namespace-std
https://google.github.io/styleguide/cppguide.html#Namespaces
https://webkit.org/code-style-guidelines/#using-in-headers
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf7-dont-write-using-namespace-at-global-scope-in-a-header-file
https://google.github.io/styleguide/cppguide.html#Namespaces
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://clang.llvm.org/extra/clang-tidy/checks/#google/build-using-namespace.html
https://webkit.org/code-style-guidelines/#using-nested-namespaces


Anonymous/Unnamed Namespace

※ Avoid anonymous namespaces/ static in headers
. . . . . . . . . . .Google, . . . . . .µOS, . . . . . . . . . . . .SEI Cert, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp

• anonymous namespace vs. static
- anonymous namespaces instead of static everywhere

. . . .Hic, . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp
- anonymous namespaces only for struct / class declaration, static

otherwise (easy identification) . . . . . . . .LLVM, . . . . . . . . . . .Mozilla, . . . . . .µOS

∗ Anonymous namespaces and static in source files:
Items local to a source file (e.g. .cpp) file should be wrapped in an anonymous
namespace/marked static . Anonymous namespaces/ static restrict symbols visibility
to the translation unit, improving function call cost and reduce the size of entry point
tables . . . . . . . . . .Google, . . . . . . . . . . . . .Chromium, . . . . . . . . . . .CoreCpp, . . . . .Hic, . . . . . .µOS23/78

https://google.github.io/styleguide/cppguide.html#Internal_Linkage
https://micro-os-plus.github.io/develop/coding-style/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL59-CPP.+Do+not+define+an+unnamed+namespace+in+a+header+file
https://clang.llvm.org/extra/clang-tidy/checks/#google/build-namespaces.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf21-dont-use-an-unnamed-anonymous-namespace-in-a-header
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://clang.llvm.org/extra/clang-tidy/checks/#misc/use-anonymous-namespace.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf22-use-an-unnamed-anonymous-namespace-for-all-internalnon-exported-entities
https://llvm.org/docs/CodingStandards.html#anonymous-namespaces
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#anonymous-namespaces
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Internal_Linkage
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#unnamed-namespaces
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf22-use-an-unnamed-anonymous-namespace-for-all-internalnon-exported-entities
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://micro-os-plus.github.io/develop/coding-style/


Namespace and Class Design

※ All helper functions and operators of a class need to belong to the same
namespace of the class

∗ Prefer free functions in namespaces instead of classes, avoid global scope
functions . . . . . . . . . .Google

Namespaces & Interface Principle 24/78

https://google.github.io/styleguide/cppguide.html#Nonmember,_Static_Member,_and_Global_Functions
http://gotw.ca/publications/mill08.htm


Style 1/2

∗ The content of namespaces is not indented . . . . . . . .LLVM, . . . . . . . . . .Google, . . . . . . . . . .Webkit
namespace ns {

void f() {}

}

∗ Close namespace declarations . . . . . . . . .LLVM, . . . . . . . . . .Google, . . . . . . . . . .Webkit, . . . . . . . . . . . . . . . .Clang-Tidy
} // namespace <namespace_identifier>
} // namespace (for anonymous namespaces)

• Namespaces should have unique names based on the project name .. . . . . . . . .Google

25/78

https://llvm.org/docs/CodingStandards.html#namespace-indentation
https://google.github.io/styleguide/cppguide.html#Namespace_Formatting
https://webkit.org/code-style-guidelines/#indentation-namespace
https://llvm.org/docs/CodingStandards.html#use-namespace-qualifiers-to-implement-previously-declared-functions
https://google.github.io/styleguide/cppguide.html#Namespaces
https://webkit.org/code-style-guidelines/#indentation-namespace
https://clang.llvm.org/extra/clang-tidy/checks/#llvm/namespace-comment.html
https://google.github.io/styleguide/cppguide.html#Namespaces


Style 2/2

• Prefer single-line nested namespace declarations ns1::ns2 C++17
.. . . . . . . . . .Google, . . . . . . . . . . .Mozilla

• Minimize use of nested namespaces . . . . . . . . . . . . .Chromium

• Namespaces can match hierarchy with file system hierarchy for consistency
include/

my_project/
core.hpp
detail/

helper.hpp

namespace my_project::detail

Using namespaces effectively
26/78

https://google.github.io/styleguide/cppguide.html#Namespaces
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-namespaces
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#named-namespaces
https://biowpn.github.io/bioweapon/2024/06/05/using-namespaces-effectively.html


Modern C++



Modern C++

Use C++ over pure C and
use modern C++ wherever possible

27/78



Modern C++ Keywords 1/3

※ Use constexpr C++11 variables to define true constants (instead of macro)
. . . . . . . . . .Google, . . . . . . . . . .Webkit, . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2

※ Use consteval C++20 function to ensure compile-time evaluation
. . . . . . . . . .Google

※ Use constinit C++20 to ensure constant initialization for non-constant
variables . . . . . . . . . .Google

※ static_assert compile-time assertion . . . . . . . . . .Unreal, . . . . .Hic

28/78

https://google.github.io/styleguide/cppguide.html#Use_of_constexpr
https://webkit.org/code-style-guidelines/#names-const-to-define
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es25-declare-an-object-const-or-constexpr-unless-you-want-to-modify-its-value-later-on
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con5-use-constexpr-for-values-that-can-be-computed-at-compile-time
https://google.github.io/styleguide/cppguide.html#Use_of_constexpr
https://google.github.io/styleguide/cppguide.html#Use_of_constexpr
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#staticassert
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations


Modern C++ Keywords 2/3

※ Prefer enum class C++11 instead of plain enum C++11
.. . . . . . . .Unreal, . . . . . .µOS, . . . . . . . . . . . .CoreCpp

∗ Use auto C++11 to avoid type names that are noisy, obvious, or
unimportant
auto array = new int[10];
auto var = static_cast<int>(var);

. . . . . . . .LLVM, . . . . . . . . . .Google, . . . .Hic, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp
(only for lambdas, iterators, template expressions) . . . . . . . . . .Unreal

※ nullptr C++11 instead of 0 or NULL for pointers
. . . . . . . . . .Google, . . . . . . . . . .Unreal, . . . . . . . . . .Webkit, . . . . . . . . . . .Mozilla, . . . .Hic, . . . . .µOS, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp

29/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#strongly-typedenums
https://micro-os-plus.github.io/develop/naming-conventions/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum3-prefer-class-enums-over-plain-enums
https://llvm.org/docs/CodingStandards.html#use-auto-type-deduction-to-make-code-more-readable
https://google.github.io/styleguide/cppguide.html#Google
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-auto.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es11-use-auto-to-avoid-redundant-repetition-of-type-names
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#auto
https://google.github.io/styleguide/cppguide.html#0_and_nullptr/NULL
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#nullptr
https://webkit.org/code-style-guidelines/#zero-null
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-nullptr.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es47-use-nullptr-rather-than-0-or-null


Modern C++ Keywords 3/3

∗ Use the explicit keyword for conversion operators C++11 and
constructors. Do not define implicit conversions . . . . . . . . . . .Google, . . . . . . . . . . .Mozilla, . . . . .µOS

※ Use using C++11 instead typedef . . . . . . . . . .Mozilla, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp

∗ Avoid throw function specifier. Use noexcept C++11 instead
............Microsoft Blog

30/78

https://google.github.io/styleguide/cppguide.html#Implicit_Conversions
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c
https://micro-os-plus.github.io/develop/coding-style/
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-using.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t43-prefer-using-over-typedef-for-defining-aliases
https://devblogs.microsoft.com/oldnewthing/20180928-00/?p=99855


Modern C++ Features 1/2

※ lambda expression C++11 .. . . . . . . . .Unreal

※ move semantic C++11 .. . . . . . . . .Unreal

※ Use range-based for loops whenever possible C++11
.. . . . . . . .LLVM, . . . . . . . . . .Unreal, . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2, . . . . . . . . . . . .CoreCpp3

∗ Prefer uniform (brace) initialization C++11 when it cannot be confused with
std::initializer_list . . . . . . . . . . . . .Chromium

31/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#lambdasandanonymousfunctions
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#movesemantics
https://llvm.org/docs/CodingStandards.html#use-range-based-for-loops-wherever-possible
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#range-basedfor
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/loop-convert.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es55-avoid-the-need-for-range-checking
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es71-prefer-a-range-for-statement-to-a-for-statement-when-there-is-a-choice
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p3-express-intent
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#variable-initialization


Modern C++ Features 2/2

∗ static_cast , reinterpret_cast , const_cast , std::bit_cast C++20,
instead of old style cast (type) . . . . . . . .LLVM, . . . . . . . . . .Google, . . . . . .µOS, . . . . .Hic, . . . . . . . . . . . . . . . .Clang-Tidy

∗ Use [[deprecated]] C++14 / [[noreturn]] C++11 / [[nodiscard]]
C++17 to indicate deprecated functions / that do not return / result should not
be discarded . . . . . . . . . . . . . . . .Clang-Tidy

∗ Use = delete C++11 to mark deleted functions

• Replace SFINAE with concepts C++20 .. . . . . . . . . . . . . . .Clang-Tidy

• Use structure binding C++17

• Use designated initializers C++20 .. . . . . . . . . . . . . . .Clang-Tidy

32/78

https://llvm.org/docs/CodingStandards.html#prefer-c-style-casts
https://google.github.io/styleguide/cppguide.html#Casting
https://micro-os-plus.github.io/develop/coding-style/
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/pro-type-cstyle-cast.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-nodiscard.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-constraints.html
https://clang.llvm.org/extra/clang-tidy/checks/#use-designated-initializers.html


Modern C++ Features - Class 1/2

∗ Always use override C++11 and final function member keywords
. . . . . . . . . .Google, . . . . . . . . . .Webkit, . . . . . . . . . . .Mozilla, . . . . . . . . . .Unreal, . . . .Hic, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp

∗ Use = default C++11 constructors

33/78

https://google.github.io/styleguide/cppguide.html#Inheritance
https://webkit.org/code-style-guidelines/#override-methods
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#apidesignguidelines
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/derived-classes
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-override.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c139-use-final-on-classes-sparingly


Modern C++ Features - Class 2/2

∗ Use braced direct-list-initialization or copy-initialization C++11 for setting
default data member value. Avoid initialization in constructors if possible . . . . . . . . . .Unreal
struct A {

int x = 3; // copy-initialization
int x { 3 }; // direct-list-initialization

};

• Replaces explicit calls to the constructor in a return with a braced initializer list
. . . . . . . . . . . . . . . .Clang-Tidy

Foo bar() { return Foo(3); }
Foo bar() { return {3}; }

34/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#defaultmemberinitializers
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/return-braced-init-list.html


Modern C++ Library

※ Avoid C-Style memory management malloc()/free() and use new/delete

. . . . . . . . . . . .CoreCpp, . . . . . . . . . . . . . . . .Clang-Tidy

※ Except int , Use fixed-width integer type C++11 (e.g. int64_t , int8_t ,
etc.) . . . . . . . . . . . . .Chromium, . . . . . . . . . .Unreal, . . . . . . . . . .Google, . . . . .Hic, . . . . . .µOS, . . . . . . . . . . . . . . . .Clang-Tidy

• Use std::print C++23 .. . . . . . . . . . . . . . .Clang-Tidy

• Uses modern type traits C++17 .. . . . . . . . . . . . . . .Clang-Tidy
std::is_integral<T>::value; // --> std::is_integral_v
std::make_signed<unsigned>::type; // --> std::std::make_signed_t

35/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r10-avoid-malloc-and-free
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/no-malloc.html
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#types
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#portablec++code
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#google/runtime-int.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-std-print.html
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/type-traits.html


Maintainability



Maintainability 1/3

※ Document code (See code documentation section)

※ Don’t optimize without reason . . . . . . . . . . . .CoreCpp

∗ Address compiler warnings. Compiler warning messages mean something is
wrong . . . . . . . . . .Unreal

∗ Compile-time and link-time errors should be preferred over run-time errors
. . . . . .µOS, . . . . . . . . . . . .CoreCpp

36/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#per1-dont-optimize-without-reason
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p5-prefer-compile-time-checking-to-run-time-checking


Maintainability 2/3

∗ Avoid RTTI (dynamic_cast) and exceptions
. . . . . . . .LLVM, . . . . . . . . . .Google1, . . . . . . . . . . .Google2, . . . . . . . . . . .Mozilla1, . . . . . . . . . . .Mozilla2, . . . . .Hic

※ Do not use reserved names . . . . . . . . . . . .SEI Cert, . . . . . . . . . . . . . . . .Clang-Tidy
- double underscore followed by any character __var
- single underscore followed by uppercase _VAR

• The goto statement shall not be used . . . . . .µOS, . . . . . . . . . . . . . . . .Clang-Tidy

• Code that is not used (commented out) should be deleted . . . . .µOS

• Code should not include unnecessary constructs: variables, types, unreachable
code . . . . .µOS37/78

https://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-exceptions
https://google.github.io/styleguide/cppguide.html#Exceptions
https://google.github.io/styleguide/cppguide.html#Run-Time_Type_Information__RTTI_
https://firefox-source-docs.mozilla.org/code-quality/coding-style/using_cxx_in_firefox_code.html#using-c-in-mozilla-code
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#don-t-use-exceptions
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL51-CPP.+Do+not+declare+or+define+a+reserved+identifier
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/reserved-identifier.html
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/avoid-goto.html
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/coding-style/


Maintainability 3/3

※ Do not depend on the order of evaluation for side effects . . . . . . . . . . . .SEI Cert
f(i++, i++);
a[i++] = i;

• Do not perform assignments in conditional statements . . . . . . . . . . . .SEI Cert, . . . . . . . . . . . . . . . .Clang-Tidy
if (a = b)

∗ Prefer sizeof(variable/value) instead of sizeof(type) . . . . . . . . . .Google

∗ Avoid octal numbers, e.g. int v = 0010; //8 . . . . .Hic, . . . . .µOS

38/78

https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL59-CPP.+Do+not+define+an+unnamed+namespace+in+a+header+file
https://wiki.sei.cmu.edu/confluence/display/c/EXP45-C.+Do+not+perform+assignments+in+selection+statements
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/assignment-in-if-condition.html
https://google.github.io/styleguide/cppguide.html#sizeof
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/


Maintainability - Code Comprehension

※ Write self-documenting code
e.g. (x + y - 1) / y → ceil_div(x, y) . . . . . . . . . .Unreal

※ Use symbolic names instead of literal values in code (don’t use magic numbers)
. . . . .Hic, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp

double area1 = 3.14 * radius * radius; // BAD
constexpr auto Pi = 3.14; // correct
double area2 = Pi * radius * radius;

• Use parentheses in expressions to specify the intent of the expression,
especially with mixed operators . . . .Hic, . . . . . .µOS, . . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . . . .CoreCpp
int r = i + j * k - 4 / 5; // BAD
if ((i != 0) && (j != 0) || (k != 0)) // correct

39/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#guidelines
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://clang.llvm.org/extra/clang-tidy/checks/#readability/magic-numbers.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es45-avoid-magic-constants-use-symbolic-constants
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#readability/math-missing-parentheses.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es41-if-in-doubt-about-operator-precedence-parenthesize


Maintainability - Constants 2/3

※ Enforce const -correctness . . . . . . . . . .Unreal
• Pass function arguments by const pointer or reference . . . . . . . . . . . .CoreCpp
• Function members . . . . . . . . . . . .CoreCpp
• Use const iteration over containers if the loop isn’t intended to modify the

container

• Declare an object const or constexpr unless you want to modify its value
later on . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . .CoreCpp2, . . . . . . . . . .Unreal

• but don’t const all the things 1, . . . . . . . . . . . .CoreCpp
• Pass by- const value: almost useless (copy), ABI break
• const return: useless (copy) . . . . . . . . . . . . . . .Clang-Tidy, . . . . . . . . . .Unreal
• const data member: disable assignment and copy constructor
• const local variables: verbose, rarely effective

1 Don’t const all the things
40/78

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#constcorrectness
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con3-by-default-pass-pointers-and-references-to-consts
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con2-by-default-make-member-functions-const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es25-declare-an-object-const-or-constexpr-unless-you-want-to-modify-its-value-later-on
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con4-use-const-to-define-objects-with-values-that-do-not-change-after-construction
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#constcorrectness
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es50-dont-cast-away-const
https://clang.llvm.org/extra/clang-tidy/checks/#readability/const-return-type.html
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#constcorrectness
https://quuxplusone.github.io/blog/2022/01/23/dont-const-all-the-things/


Maintainability - Functions

※ Use assert to document preconditions and assumptions
. . . . . . . . .LLVM, . . . . . . . . . . . .CoreCpp

• Ensure that all statements are reachable for at least one combination of function
inputs . . . . .Hic

• Prevent using functions that don’t accept nullptr . . . . . . . . . . . .CoreCpp
# include <cstddef> // std::nullptr_
void f(void*);
void f(std::nullptr_t) = delete;
// f(nullptr) // compile error

41/78

https://llvm.org/docs/CodingStandards.html#assert-liberally
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i5-state-preconditions-if-any
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/general
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i12-declare-a-pointer-that-must-not-be-null-as-not_null


Maintainability - Object Semantic

∗ Prefer RAII instead of manual resource management
. . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2

void f(char* name) {
FILE* input = fopen(name, "r"); // use "ifstream input {name};" instead
if (something) return; // BAD: if something == true,
// ... // a file handle is leaked
fclose(input);

}

※ Never transfer ownership by a raw pointer (T*) or reference (T&) . Use
object semantics, unique_ptr , etc. . . . . . . . . . . . .CoreCpp

∗ Avoid singletons. Use a static member function named singleton() to
access the instance of the singleton instead of a free function . . . . . . . . . .Webkit, . . . . . . . . . . . .CoreCpp

42/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#p8-dont-leak-any-resources
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#e6-use-raii-to-prevent-leaks
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#r32-take-a-unique_ptrwidget-parameter-to-express-that-a-function-assumes-ownership-of-a-widget
https://webkit.org/code-style-guidelines/#singleton-static-member
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i3-avoid-singletons


Maintainability - Template and Deduction

※ Avoid complicated template programming . . . . . . . . . .Google

∗ Be aware of bug-prone deductions
template<typename T, int N>
void f(const T&);

template<typename T>
void f(T); // same of f(T*)

int array[3];
f(array); // call the second funtion, not f(T&)

43/78

https://google.github.io/styleguide/cppguide.html#Template_metaprogramming


Maintainability - Library

∗ Do not pass an array as a single pointer. Prefer std::span , std::mdspan

. . . . . . . . . . . .CoreCpp

∗ Prefer core-language features over library facilities, e.g. uint8_t vs.
std::byte

• Prefer std::array over plain array. It can be also used to return multiple values
of the same type from a function . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2

• Use std::string_view to refer to character sequences . . . . . . . . . . . .CoreCpp

Prefer core-language features over library facilities 44/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i13-do-not-pass-an-array-as-a-single-pointer
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es27-use-stdarray-or-stack_array-for-arrays-on-the-stack
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#slcon1-prefer-using-stl-array-or-vector-instead-of-a-c-array
https://quuxplusone.github.io/blog/2022/10/16/prefer-core-over-library/


Portability



Portability 1/2

※ Ensure ISO C++ compliant code. Do not use non-standard extensions
see -Wpedantic . . . . .Hic, . . . . . . . . . .Google1, . . . . . . . . . .Google2, . . . . . .µOS, . . . . . . . . . . . .CoreCpp

※ Do not use deprecated C++ features, or asm declarations, e.g. register ,
__attribute__ , throw (function qualifier) . . . . .Hic

※ Do not use reinterpret_cast or union for type punning
Prefer std::bit_cast or std::memcpy . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2, . . . . .Hic

※ Except int , use fixed-width integer type (e.g. int64_t , int8_t , etc.)
. . . . . . . . . . . . .Chromium, . . . . . . . . . .Unreal, . . . . . . . . . .Google, . . . . .Hic, . . . . . .µOS, . . . . . . . . . . . . . . . .Clang-Tidy

45/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/general
https://google.github.io/styleguide/cppguide.html#C++_Version
https://google.github.io/styleguide/cppguide.html#Template_metaprogramming
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-Cplusplus
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/general
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c183-dont-use-a-union-for-type-punning
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es49-if-you-must-use-a-cast-use-a-named-cast
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#types
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#portablec++code
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#google/runtime-int.html


Portability 2/2

※ Don’t use long double

∗ Do not use UTF characters* for portability, prefer ASCII . . . . . . . . . .Google, . . . . .µOS

∗ If UTF is needed, prefer UTF-8 encoding for portability . . . . . . . . . .Google, . . . . . . . . . . . . .Chromium

∗ Use the same line ending (e.g. '\n' ) for all files . . . . . . . . . . .Mozilla, . . . . . . . . . . . . .Chromium

* Trojan Source attack for introducing invisible vulnerabilities 46/78

https://google.github.io/styleguide/cppguide.html#Non-ASCII_Characters
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Non-ASCII_Characters
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#miscellany
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#formatting-code
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#miscellany
https://pvs-studio.com/en/blog/posts/cpp/0933/


Naming



Naming

“Beyond basic mathematical aptitude, the difference be-
tween good programmers and great programmers is verbal
ability”

Marissa Mayer

47/78



General Notes on Naming 1/2

∗ Naming is hard. Most of the time, code is shared with other developers. It is
worth spending a few seconds to find the right name

∗ Think about the purpose to choose names

∗ Adopt names commonly used in real contexts (outside the code)

∗ Don’t use the same name for different things. Use a specific name everywhere

• Prefer single English word to implementation-focused, e.g.
UpdateConfigFile() → save()

• Use natural word pair, e.g. create()/destroy() , open()/close() ,
begin()/end() , source()/destination() . . . . .µOS

48/78

https://micro-os-plus.github.io/develop/naming-conventions/


General Notes on Naming 2/2

• Don’t overdecorate, e.g. Base/Impl , Factory/Singleton

• Don’t list the content, e.g. NameAndAddress → ContactInfo

• Don’t repeat class/enum names, e.g. Employee::EmployeeName

• Avoid temporal attributes, e.g. PreLoad() , PostLoad()

• Use adjectives to enrich a name, e.g. Name → FullName , Salary →
AnnualSalary

Naming is Hard: Let’s Do Better, CppCon 2019, Kate Gregory
49/78

https://www.youtube.com/watch?v=MBRoCdtZOYg


Entities Naming 1/2

∗ Abbreviations are generally bad, longer names are better in most cases (don’t
be lazy) . . . . .µOS

※ Use whole words, except in the rare case where an abbreviation would be more
canonical and easier to understand, e.g. tmp . . . . . . . . . .Webkit

∗ Avoid short and very long names. Remember that the average word length in
English is 4.8 . . . . . . . . . . . . . . . .Clang-Tidy

50/78

https://micro-os-plus.github.io/develop/coding-style/
https://webkit.org/code-style-guidelines/#names-full-words
https://clang.llvm.org/extra/clang-tidy/checks/#readability/identifier-length.html


Entities Naming 2/2

• Avoid names that are easily misread: similar or hard to pronounce . . . . . . . . . . . .CoreCpp

• Do not abbreviate by deleting letters within a word . . . . . . . . . .Google

• If you are naming something that is analogous to an existing C or C++ entity
then you can follow the existing naming convention scheme .. . . . . . . . .Google

51/78

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl19-avoid-names-that-are-easily-misread
https://google.github.io/styleguide/cppguide.html#General_Naming_Rules
https://google.github.io/styleguide/cppguide.html#Exceptions_to_Naming_Rules


Literals

※ Avoid ambiguous characters, o/O/0 , I/l/1 , s/S/5 , Z/2 , N/n/h , B/8
e.g. hel1o . . . .Hic, . . . . . .µOS, . . . . . . . . . . . .CoreCpp

• Use uppercase for post-fix literals, 1234L , 1234ULL . . . . . . . . . . . .SEI Cert

• Hexadecimal constants should be uppercase, 0x1BA7 . . . . . . . . . . . . . . . . . . . . . . .Autosar, A2-13-5
(personal) exception: do not mix with uppercase for post-fix literals, 0x1BACULL

• Make literals readable . . . . . . . . . . . .CoreCpp
auto c = 299'792'458; // digit separation
auto interval = 100ms; // using <chrono>

52/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es8-avoid-similar-looking-names
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152241
https://www.autosar.org/fileadmin/standards/R18-03_R1.4.0/AP/AUTOSAR_RS_CPP14Guidelines.pdf
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl11-make-literals-readable


Variables Naming

∗ The length of a variable should be proportional to the size of the scope that
contains it. For example, i is fine within a loop

. . . . . . . . . .Google, . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2

• Names can be made singular or plural depending on whether they hold a single
value or multiple values, thus arrays and collections should be plural . . . . .µOS
int value;
int values[N];

• Use common loop variable names
- i, j, k, l used in order
- it for iterators

53/78

https://google.github.io/styleguide/cppguide.html#General_Naming_Rules
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es7-keep-common-and-local-names-short-and-keep-uncommon-and-non-local-names-longer
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl7-make-the-length-of-a-name-roughly-proportional-to-the-length-of-its-scope
https://micro-os-plus.github.io/develop/naming-conventions/


Functions Naming

∗ Should be descriptive verb (as they represent actions) . . . . . . . . . .Webkit

∗ Should describe their action or effect instead of how they are
implemented, e.g. partial_sort() → top_n()

∗ Functions that return boolean values should start with boolean verbs, like
is, has, should, does . . . . .µOS
empty() → is_empty()

54/78

https://webkit.org/code-style-guidelines/#names-verb
https://micro-os-plus.github.io/develop/naming-conventions/


Naming Style Conventions

Capital Uppercase first word letter (sometimes called Pascal style or uppercase
Camel style) (less readable, shorter names)
CapitalStyle

Camel-Back Uppercase first word letter except the first one (less readable, shorter
names)
camelBack

Snake Lower case words separated by single underscore (good readability, longer
names)
snake_style

Macro Upper case words separated by single underscore (sometimes called All
Capitalized or Screaming style) (best readability, longer names)
MACRO_STYLE

55/78



Naming Style Conventions - Variables/Constant

Variable Variable names should be nouns
• Capital style e.g. MyVar . . . . . . . .LLVM, . . . . . . . . . .Unreal

• Snake style e.g. my_var . . . . . . . . . . .Google, . . . . . . . . . .Webkit, Std, . . . . . .µOS

• Global variable with g prefix, e.g. gVar . . . . . . . . . . .Mozilla

• Arguments with a prefix, e.g. aVar . . . . . . . . . . .Mozilla

Constant • Capital style + k prefix, . . . . . . . . . .Google, . . . . . . . . . . .Mozilla
e.g. kConstantVar

• Snake style e.g. my_var . . . . . .µOS

• Macro style e.g. CONSTANT_VAR OpenStack

56/78

https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://google.github.io/styleguide/cppguide.html#Variable_Names
https://webkit.org/code-style-guidelines/#names-basic
https://micro-os-plus.github.io/develop/coding-style/
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://google.github.io/styleguide/cppguide.html#Constant_Names
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://micro-os-plus.github.io/develop/coding-style/


Naming Style Conventions - Function

• Camel-back style, e.g. myFunc() . . . . . . . .LLVM

• Capital style, e.g. MyFunc() . . . . . . . . . .Google, . . . . . . . . . . . . .Chromium, . . . . . . . . . . .Mozilla, . . . . . . . . . .Unreal

• Snake style, e.g. my_func() . . . . . . . . . .Webkit, Std, . . . . .µOS

• Snake style for accessor and mutator methods . . . . . . . . . .Google, . . . . . . . . . . . . .Chromium

57/78

https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://google.github.io/styleguide/cppguide.html#Function_Names
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/blink-c++.md#use-for-all-function-names
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://webkit.org/code-style-guidelines/#names-basic
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Function_Names
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#inline-functions


Naming Style Conventions - Enum/Namespace

Enum • Capital style + k . . . . . . . . . .Google
e.g. enum MyEnum { kEnumVar1, kEnumVar2 }

• e prefix . . . . . . . . . . .Mozilla
e.g. enum MyEnum { eVar1, eVar2 }

• Capital style . . . . . . . .LLVM, . . . . . . . . . .Webkit, . . . . . . . . . .Unreal
e.g. enum MyEnum { EnumVar1, EnumVar2 }

• Snake style . . . . . .µOS
e.g. enum MyEnum { enum_var1, enum_var2 }

Type Should be nouns
• Capital style (including classes, structs, enums, typedefs, template, etc.)

e.g. HelloWorldClass . . . . . . . .LLVM, . . . . . . . . . . .Google, . . . . . . . . . .Webkit, . . . . . . . . . .Unreal

• Snake style µOS (class), Std58/78

https://google.github.io/styleguide/cppguide.html#Enumerator_Names
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://webkit.org/code-style-guidelines/#names-enum-members
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://micro-os-plus.github.io/develop/coding-style/
https://llvm.org/docs/CodingStandards.html#name-types-functions-variables-and-enumerators-properly
https://google.github.io/styleguide/cppguide.html#Type_Names
https://webkit.org/code-style-guidelines/#names-basic
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions


Naming Style Conventions - Type/Macro/File

Namespace • Snake style, e.g. my_namespace . . . . . . . . . . .Google, . . . . . . . .LLVM, Std

• Capital style, e.g. MyNamespace . . . . . . . . . .Webkit, . . . . . . . . . .Unreal

Macro Macro style, e.g. MY_MACRO
. . . . . . . . . .Google, Std, . . . . . . . . . .Unreal, . . . . . . . . . .Webkit, . . . . . . . . . . .Mozilla, . . . . . . . . . . .CoreCpp

Macro style should be used only for macros
. . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2, . . . . . . . . . . . .CoreCpp3, . . . . . . . . . . .CoreCpp4

File • Snake style ( my_file ) . . . . . . . . . .Google

• Capital style ( MyFile ), could lead Windows/Linux conflicts . . . . . . . .LLVM

59/78

https://google.github.io/styleguide/cppguide.html#Namespace_Names
https://llvm.org/docs/CodingStandards.html#use-namespace-qualifiers-to-implement-previously-declared-functions
https://webkit.org/code-style-guidelines/#names-basic
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://google.github.io/styleguide/cppguide.html#Macro_Names
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#namingconventions
https://webkit.org/code-style-guidelines/#names-define-constants
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#global-functions-macros-etc
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es32-use-all_caps-for-all-macro-names
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es9-avoid-all_caps-names
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es32-use-all_caps-for-all-macro-names
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es31-dont-use-macros-for-constants-or-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl9-use-all_caps-for-macro-names-only
https://google.github.io/styleguide/cppguide.html#File_Names
https://llvm.org/docs/CodingStandards.html#use-namespace-qualifiers-to-implement-previously-declared-functions


Personal Comment

Personal Comment: Macro style needs to be used only for macros to avoid subtle bugs. I prefer
snake style for almost everything because it has the best readability. On the other hand, I don’t want
to confuse typenames and variables, so I use camel style for the former ones. Finally, I also use camel
style for compile-time constants because they are very relevant in my work and I need to quickly
identify them

60/78



Enforcing Naming Styles

Naming style conventions can be also enforced by using tools like
clang-tidy: readability-identifier-naming �

.clang-tidy configuration file

Checks: 'readability-identifier-naming'
HeaderFileExtensions: ['', 'h','hh','hpp','hxx']
ImplementationFileExtensions: ['c','cc','cpp','cxx']
CheckOptions:

readability-identifier-naming.ClassCase: 'lower_case'
readability-identifier-naming.MacroDefinitionCase: 'UPPER_CASE'

class MyClass {}; // before
# define my_macro

class my_class {}; // after
# define MY_MACRO

61/78

 https://clang.llvm.org/extra/clang-tidy/checks/readability/identifier-naming.html#readability-identifier-naming


Readability and
Formatting



Horizontal Spacing 1/3

※ Limit line length (width) to be at most 80 characters long (or 100, or 120) →
help code view on a terminal . . . . . . . .LLVM (80), . . . . . . . . . .Google (80), . . . . .µOS(120)
Personal Comment: I was tempted several times to use a line length > 80 to reduce the
number of lines, and therefore improve the readability. Many of my colleagues use split-screens or
even the notebook during travels. A line length of 80 columns is a good compromise for everyone

• Is the 80 character limit still relevant in times of widescreen monitors?
• Linus Torvalds on 80 column limit

62/78

https://llvm.org/docs/CodingStandards.html#source-code-width
https://google.github.io/styleguide/cppguide.html#Line_Length
https://micro-os-plus.github.io/develop/coding-style/
https://softwareengineering.stackexchange.com/questions/604/is-the-80-character-limit-still-relevant-in-times-of-widescreen-monitors
https://lkml.org/lkml/2020/5/29/1038


Horizontal Spacing 2/3

※ Use always the same indentation style
- tab → 2 spaces . . . . . . . . . .Google, . . . . . .µOS
- tab → 4 spaces . . . . . . . .LLVM, . . . . . . . . . .Webkit, . . . .Hic, Python
- (actual) tab = 4 spaces . . . . . . . . . .Unreal

Personal Comment: I worked on projects with both two and four-space tabs. I observed less
bugs due to indentation and better readability with four-space tabs. ’Actual tabs’ breaks the line
length convention and can introduce tabs in the middle of the code, producing a very different
formatting from the original one

Style Guide for Python Code, Guido van Rossum„ Barry Warsaw, Alyssa Coghlan 63/78

https://google.github.io/styleguide/cppguide.html#Spaces_vs._Tabs
https://micro-os-plus.github.io/develop/coding-style/
https://llvm.org/docs/CodingStandards.html#whitespace
https://webkit.org/code-style-guidelines/#indentation-no-tabs
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://peps.python.org/pep-0008/
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#tabsandindenting
https://peps.python.org/pep-0008/


Horizontal Spacing 3/3

※ Separate commands, operators, etc., by a space
. . . . . . . .LLVM, . . . . . . . . . .Google1, . . . . . . . . . .Google2, . . . . . . . . . .Webkit, . . . . . . . . . . . .CoreCpp

if(a*b<10&&c) // BAD
if (a * c < 10 && c) // good

∗ Prefer consecutive alignment
int var1 = ...
long long int longvar2 = ...

• Do not place spaces around unary operators i ++ . . . . . . . . . .Webkit

• Never put trailing white space or tabs at the end of a line . . . . . . . . . .Google

64/78

https://llvm.org/docs/CodingStandards.html#spaces-before-parentheses
https://google.github.io/styleguide/cppguide.html#Horizontal_Whitespace
https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://webkit.org/code-style-guidelines/#spacing
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl15-use-spaces-sparingly
https://webkit.org/code-style-guidelines/#spacing-unary-op
https://google.github.io/styleguide/cppguide.html#Horizontal_Whitespace


Pointers/References

• Declaration of pointer/reference variables or arguments may be placed with the
asterisk/ampersand adjacent to either the type or to the variable name for all
symbols in the same way .. . . . . . . . .Google

• char* c; . . . . . . . . . .Webkit, . . . . . . . . . . . . .Chromium, . . . . . . . . .Unreal, . . . . . . . . . . . .CoreCpp
• char *c;
• char * c;

• Pointer and reference types and variables have no space after the * or &
. . . . . . . . . .Google

char * v; // BAD
auto & v = w; // BAD
* p = 3; // BAD
v. x + 2; // BAD
x = r-> y; // BAD

65/78

https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions
https://webkit.org/code-style-guidelines/#pointers-cpp
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#code-formatting
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#generalstyleissues
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl18-use-c-style-declarator-layout
https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions


Vertical Spacing 1/2

∗ Do not write excessive long file

∗ Each statement should get its own line
. . . . . . . . . .Webkit, . . . . . .µOS, . . . . . . . . . . . .CoreCpp1, . . . . . . . . . . . .CoreCpp2, . . . .Hic, . . . . . . . . . .Google

x++;
y++;
if (condition)

doIt();

What is your threshold for a long source file? 66/78

https://webkit.org/code-style-guidelines/#linebreaking-multiple-statements
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl4-maintain-a-consistent-indentation-style
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl20-dont-place-two-statements-on-the-same-line
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://twitter.com/lefticus/status/1352320798506160129


Vertical Spacing 2/2

∗ Minimize the number of empty rows. The more code that fits on one screen,
the easier it is to follow and understand the control flow of the program

. . . . . . . . . .Google

• Close files with a blank line (C98 compatibility) . . . . . . . . . .Unreal

67/78

https://google.github.io/styleguide/cppguide.html#Vertical_Whitespace
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#generalstyleissues


Braces 1/2

∗ Multi-lines statements and complex conditions require curly braces. Use an
additional boolean variable if possible . . . . . . . . . .Google1, . . . . . . . . . .Google2, . . . . . . . . . .Webkit
if (c1 && ... &&

c2 && ...) { // correct
<statement>

}

• Curly braces are not required for single-line statements ( for, while, if )
. . . . . . . .LLVM, . . . . . . . . . .Google, . . . . . . . . . .Webkit

if (c1) { // not mandatory
<statement>

}

• Always use brace for all control statements . . . . . . . . . . .Mozilla, . . . . . . . . . . . . .Chromium, . . . . .µOS

68/78

https://google.github.io/styleguide/cppguide.html#Formatting_Looping_Branching
https://google.github.io/styleguide/cppguide.html#Boolean_Expressions
https://webkit.org/code-style-guidelines/#braces-one-line
https://llvm.org/docs/CodingStandards.html#don-t-use-braces-on-simple-single-statement-bodies-of-if-else-loop-statements
https://google.github.io/styleguide/cppguide.html#Function_Calls
https://webkit.org/code-style-guidelines/#braces-one-line
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#control-structures
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#code-formatting
https://micro-os-plus.github.io/develop/coding-style/


Braces 2/2

∗ Use always the same style for braces
• Same line, aka Kernigham & Ritchie

. . . . . . . . . . .Google1, . . . . . . . . . . .Google2

. . . . . . . . . .Webkit (function only), . . . . . . . . . . . .CoreCpp (expect for function)

• Its own line, aka Allman

. . . . . . . . . .Unreal, . . . . . . . . . .Webkit (class, namespace, control flow)

//Kernigham & Ritchie
int main() {

code
}

// Allman
int main()
{

code
}

Personal Comment: C++ is a very verbose language. Same line convention helps to keep the
code more compact, improving the readability 69/78

https://google.github.io/styleguide/cppguide.html#Function_Declarations_and_Definitions
https://google.github.io/styleguide/cppguide.html#Vertical_Whitespace
https://webkit.org/code-style-guidelines/#braces-function
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl17-use-kr-derived-layout
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#braces
https://webkit.org/code-style-guidelines/#braces-function


Type Decorators

• The same concept applies to const
• const int* West notation . . . . . . . . . .Google, . . . . . . . . . . . .CoreCpp
• int const* East notation Autosar (Rule A7-1-3)

Personal Comment: I prefer West notation to prevent unintentional cv-qualify
(const/volatile) of a reference or pointer types char &const p , see DCL52-CPP. Never

qualify a reference type with const or volatile

• Prefer the common order of declaration static constexpr int var . . . . .µOS

70/78

https://google.github.io/styleguide/cppguide.html#Use_of_const
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl26-use-conventional-const-notation
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL52-CPP.+Never+qualify+a+reference+type+with+const+or+volatile
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL52-CPP.+Never+qualify+a+reference+type+with+const+or+volatile
https://micro-os-plus.github.io/develop/naming-conventions/


Reduce Code Verbosity

• Use the short name version of built-in types, e.g. . . . . . . . . . .Webkit
unsigned instead of unsigned int
long long instead of long long int

• Don’t const all the things. Avoid Pass by- const , const return, const
data member, const local variables

Don’t const all the things 71/78

https://webkit.org/code-style-guidelines/#types-unsigned
https://quuxplusone.github.io/blog/2022/01/23/dont-const-all-the-things/


Other Issues

※ Write all code in English, comments included

∗ Use true , false for boolean variables instead numeric values 0, 1

. . . . . . . . . .Webkit, . . . . . . . . . . . . . . . .Clang-Tidy

• Boolean expressions at the same nesting level that span multiple lines should have
their operators on the left side of the line instead of the right side . . . . . . . . . .Webkit
return attribute.name() == srcAttr

|| attribute.name() == lowsrcAttr;

Final note: Most of the formatting guidelines can be forced by using clang-tidy �

and clang-format �

72/78

https://webkit.org/code-style-guidelines/#zero-bool
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-bool-literals.html
https://webkit.org/code-style-guidelines/#indentation-wrap-bool-op
https://clang.llvm.org/extra/clang-tidy/checks/readability/identifier-naming.html
https://clang.llvm.org/docs/ClangFormatStyleOptions.html


Code
Documentation and
Comments



Programmers vs. Documentation

73/78



Code Documentation

※ Comment what the code does and why . . . . . . . . .LLVM, . . . . . . . . . . . .CoreCpp
- Avoid how it is implemented at low level
- All files should report a brief description of their purpose
- Describe classes and methods

∗ Don’t say in comments what can be clearly stated in code . . . . . . . . . . . .CoreCpp

∗ Document each entity (functions, classes, namespaces, definitions, etc.) and
only in the declarations, e.g. header files

74/78

https://llvm.org/docs/CodingStandards.html#commenting
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl2-state-intent-in-comments
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl1-dont-say-in-comments-what-can-be-clearly-stated-in-code


Function Documentation

∗ The first sentence (beginning with @brief ) is used as an abstract

∗ Document the inputs: @param[in] , @param[in,out] , , and template
parameters @tparam

∗ Document outputs: return value @return and output parameters
@param[out] . . . . . . . . . . .Google, . . . . . . . . . .Unreal

∗ Document preconditions: input ranges, impossible values (e.g. nullptr ),
status/return values meaning . . . . . . . . . .Unreal

∗ Document program state changes (e.g. static ), arguments with lifetime
beyond the duration of the method call (e.g. constructors), performance
implications . . . . . . . . . . .Google, . . . . . . . . . .Unreal75/78

https://google.github.io/styleguide/cppguide.html#Function_Comments
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#exampleformatting
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#exampleformatting
https://google.github.io/styleguide/cppguide.html#Function_Comments
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#exampleformatting


Comment Syntax

∗ Prefer // comment instead of /* */ → prevent bugs and allow string-search
tools like grep to identify valid code lines . . . . .Hic, . . . . .µOS

• Use the same style of comment // , /// , //* , //! , etc.

• Multiple lines and single line comments can have different styles
/**
* comment1
* comment2
*/

/// single line

• µOS++ Doxygen style guide link
• Teaching the art of great documentation, by Google 76/78

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/lexical-conventions
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/doxygen-style-guide/
https://developers.googleblog.com/2020/07/teaching-art-of-great-documentation.html


Other Comment Issues

• Use anchors for indicating special issues: TODO , FIXME , BUG , etc.
. . . . . . . . . .Webkit, . . . . . . . . . . . . .Chromium

• Only one space between statement and comment . . . . . . . . . .Webkit

77/78

https://webkit.org/code-style-guidelines/#comments-eol
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#comment-style
https://webkit.org/code-style-guidelines/#comments-eol


File Documentation

∗ Any file start with a license (even scripts) . . . . . . . . . .Google, . . . . . . . .LLVM

• Each file should include
- @author name, surname, affiliation, email
- @date e.g. year and month
∗ @file the purpose of the file

in both header and source files

78/78

https://google.github.io/styleguide/cppguide.html#File_Comments
https://llvm.org/docs/CodingStandards.html#file-headers

	auto
	Templates and Type Deduction
	Control Flow
	Redundant Control Flow
	if/else
	Comparison
	switch
	for/while

	namespace
	using namespace Directive
	Anonymous/Unnamed Namespace
	Namespace and Class Design
	Style

	Modern C++
	Keywords
	Features
	Class
	Library

	Maintainability
	Code Comprehension
	Functions
	Template and Deduction
	Library

	Portability
	Naming
	Entities
	Literals
	Variables
	Functions
	Style Conventions
	Enforcing Naming Styles

	Readability and Formatting
	Horizontal Spacing
	Pointers/References
	Vertical Spacing
	Braces
	Type Decorators
	Reduce Code Verbosity
	Other Issues

	Code Documentation and Comments
	Function Documentation
	Comment Syntax
	File Documentation


