Modern C4+

Programming

15. CoDE CONVENTIONS

PART [

Federico Busato

2026-01-06

Table of Contents

C++4 Project Organization
m Project Directories
m Project Files
m “Common” Project Organization Notes

m Alternative - “Canonical” Project Organization

Coding Styles and Conventions
m Overview

m Popular Coding Styles

1/76

Table of Contents

Header Files and #include
m #include Guard
m #include Syntax
m Order of #include

m Common Header/Source Filename Conventions

I Preprocessing
m Macro

m Preprocessing Statements

2/76

Table of Contents

H Variables
m static Global Variables

m Conversions

@ Enumerators

Arithmetic Types
m Signed vs. Unsigned Integral Types
m Integral Types Conversion
m Integral Types: Size and Other Issues

m Floating-Point Types

3/76

Table of Contents

H Functions
m Functions Parameters
m Functions Arguments

Function Return Values

m Function Specifiers

m Lambda Expressions

4/76

Table of Contents

Bl Structs and Classes
m struct vs. class
m I[nitialization
m Braced Initializer Lists
m Special Member Functions
m =default, =delete
m Other Issues
m Inheritance

m Style

5/76

C++ Project
Organization

“Common” Project Organization

Project
Root = = =

bin build doc
- submodules - third_party - data

- test - examples - utils
include src
5] 5]
==. |LICENSE ==. | README.md
Q CMakelLists.txt Q Doxyfile | Q .gitignore
Q .clang-tidy Q .clang-format 6/76

Project Directories

Fundamental directories
include Project public header files
src Project source/implementation files and private headers

test (or tests) Source files for testing the project

Empty directories
bin Output executables
build All intermediate files

doc (or docs) Project documentation

7/76

Project Directories

Optional directories

submodules Project submodules

third_party (less often deps/external/extern) dependencies or external
libraries

data (or extras) Files used by the executables or for testing
examples Source files for showing project features
utils (or tools, or script) Scripts and utilities related to the project

cmake CMake submodules (.cmake)

8/76

Project Files

LICENSE Describes how this project can be used and distributed
README.md General information about the project in Markdown format *
CMakeLists.txt Describes how to compile the project

Doxyfile Configuration file used by doxygen to generate the documentation (see
next lecture)

others .gitignore, .clang-format, .clang-tidy, etc.

* Markdown is a language with a syntax corresponding to a subset of HTML tags

github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet 9/76

github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Readme and License

README.md

= README template:

- Embedded Artistry README Template
- Your Project is Great, So Let’s Make Your README Great Too

LICENSE

= Choose an open source license:

choosealicense.com

= License guidelines:

Why your academic code needs a software license

10/76

https://embeddedartistry.com/blog/2017/11/30/embedded-artistry-readme-template
https://embeddedartistry.com/blog/2017/11/27/your-project-is-great-so-lets-make-your-readme-great-too/
https://choosealicense.com/
https://bastian.rieck.me/blog/posts/2020/licence/

File extensions

Common C++ file extensions:

» header .h .hh .hpp .hxx

» header implementation .i.h .i.hpp -inl.h .inl.hpp
(1) separate implementation from interface for inline functions and templates

(2) keep implementation “inline” in the header file

= source/implementation .cc .cpp .cxx

11/76

“Common” Project Organization Notes

= Public header(s) in include/

= source files, private headers, header implementations in src/ directory

= The main file (if present) should be placed in src/ and called main. cpp

» Code tests, unit and functional tests can be placed in test/ .
Alternatively, unit tests can appear in the same directory of the component
under test with the same filename and include .test suffix, e.g.
my file.test.cpp

12/76

“Common” Project Organization Example

<project_name> (root) <project_name> (root)

include/ README.md

L public_header.hpp CMakeLists.txt

src/ Doxyfile
private_header.hpp LICENSE
templ_class.hpp build/ (empty)
templ_class.i.hpp bin/ (empty)
(template/inline functions) doc/ (empty)
templ_class.cpp test/
(specialization) kmy_test .hpp
subdir/ my_test.cpp

Lmy_file.cpp 13/76

“Common” Project Organization - Improvements

The “common” project organization can be <project_name>
improved by adding the name of the project include/
as subdirectory of include/ L<project_name>/

Some projects often entirely avoid the T A R

include/ directory src/

L rivate_file.c
This is particularly useful when the project L - LE

is used as submodule (part of a larger
project) or imported as an external library

The includes now look like:

#1include <my_project/public_header.hpp>

14/76

Alternative - “Canonical” Project Organization 1/2

= Header and source files (or module interface and implementation files) are next

to each other (no include/ and src/ split)

= Headers are included with <> and contain the project directory prefix, for
example, <hello/hello.hpp> (no need of "" syntax)

» Header and source file extensions are .hpp / .cpp (.mpp for module
interfaces). No special characters other than _ and - in file names with . only
used for extensions

= A source file that implements a module’s unit tests should be placed next to that
module’s files and be called with the module’s name plus the .test second-level

extension

A project’s functional /integration tests should go into the test/ subdirectory 15/76

Alternative - “Canonical” Project Organization

<project_name> (v1)

| <project_name>/
public_header.hpp
private_header.hpp
my_file.cpp
my_file.mpp
my_file.test.cpp

| test/

Lg,my_functional_test.cpp
| _build/
| _doc/

<project_name> (v2)
| <project_name>/
kpublic_header.hpp
private/
private_header.hpp
my_internal_file.cpp
my_internal_file.test.cpp
| test/
Lg,my_functional_test.Cpp
| _build/
| _doc/

16/76

References

= Kick-start your C++! A template for modern C++ projects
= The Pitchfork Layout

= Canonical Project Structure

17/76

https://github.com/TheLartians/ModernCppStarter
https://api.csswg.org/bikeshed/?force=1&url=https://raw.githubusercontent.com/vector-of-bool/pitchfork/develop/data/spec.bs
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1204r0.html

Coding Styles and
Conventions

“One thing people should remember is
there is what you can do in a language and
what you should do”

Bjarne Stroustrup

18/76

Most important rule:
BE CONSISTENT!!

“The best code explains itself"
GOOGLE

19/76

“80% of the lifetime cost of a piece of

software goes to maintenance”

Unreal Engine

20/76

>
=
®
s
C
()
°
S)
O

“The worst thing that can happen to a code base is size”

Steve Yegge

LAST PUSH

ILL JUST CHECK
YOUR CODE QUALITY

WELCOME TO
PURGATORY

ALLOW ME

21/76

MONKEYUSER. COM

Bad Code

How my code looks like for other people?

WHAT 1S ALL

His
e THIS CRAP?

STRUCTURE HERE 7

THIS 516N DOESN'T
HELP ME MUucH.

/
@ f“”’ii@

WHAT A HORRIBLY DESIGNED
STREET, MOST INEFFICIENT.

- — 5
=l

;e =

_

<B4

GoOD GoD! WHAT THE HELL
DOES THIS CONTRAPTION Do?

abstrusegoose.com/432

22/76

https://abstrusegoose.com/432

Coding Styles Overview

Coding styles are common guidelines to improve the readability, maintainability,
prevent common errors, and make the code more uniform

A consistent code base helps developers better understand code organization,
focus on program logic, and reduce the time spent interpreting other engineers’
intentions

PERSONAL COMMENT: Don't start a project that involves multiple engineers without establishing clear
guidelines that all engineers agree to. This is essential to avoid costly refactoring, personal style

discussions, and conflicts later on

This section, including the review of all coding styles, has been updated on October 2024 23/76

Popular Coding Styles

» LLVM Coding Standards. 11vm.org/docs/CodingStandards.html @

= Google C++ Style Guide.
google.github.io/styleguide/cppguide.html @

= Webkit Coding Style. webkit.org/code-style-guidelines @

= Mozilla Coding Style. firefox-source-docs.mozilla.org@
The Firefox code base adopts parts of the Google Coding style for C++ code (C++17, 2020),

but not all of its rules

= Chromium Coding Style. chromium.googlesource.com@

Chromium follows the Google C++ Style Guide with some exceptions 24/76

https://llvm.org/docs/CodingStandards.html
https://google.github.io/styleguide/cppguide.html
https://webkit.org/code-style-guidelines/
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/

Popular Coding Styles

= Unreal Engine - Coding Standard

docs.unrealengine.com/en-us/Programming &
» 1 OS++ (derived from MISRA 2018 and JSV)
micro-os-plus.github.io/develop/coding-style @

micro-os-plus.github.io/develop/naming-conventions @

More educational-oriented guidelines

= C++ Core Guidelines
isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines @

25/76

https://docs.unrealengine.com/en-us/Programming/Development/CodingStandard
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/naming-conventions/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Popular Coding Styles

Secure Coding

= High Integrity C++ Coding Standard. www.perforce.com/resources

» CERT C++ Secure Coding. wiki.sei.cmu.edu

Critical system coding standards

= MISRA C++17, 2023. www.misra.org.uk
= Autosar C++14, 2019 (based on MISRA:2008). www.autosar.org

= Joint Strike Fighter Air Vehicle (JSV) C++, 2005. JSF-AV-rule

26/76

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682&src=spaceshortcut
https://misra.org.uk/product/misra-cpp2023/
https://www.autosar.org/fileadmin/standards/R21-11/AP/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.stroustrup.com/JSF-AV-rules.pdf

Static Analysis Tools

= clang-tidy
clang.llvm.org/extra/clang-tidy/checks/list.html &

= PVS-Studio

pvs-studio.com/en/docs/warnings @

= SonarSource

rules.sonarsource.com/cpp/ @

= cpp-checks
sourceforge.net/p/cppcheck/wiki/List0fChecks/ @

Note: each tool also provides the list of checks that are evaluated 27/76

https://clang.llvm.org/extra/clang-tidy/checks/list.html
https://pvs-studio.com/en/docs/warnings/
https://rules.sonarsource.com/cpp/
https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/

% — Important!
Highlight potential code issues such as bugs, inefficiency, or important
readability problems. Should not be ignored

* — Useful
It is not fundamental, but it emphasizes good practices and can help to prevent

bugs. Should be followed if possible

= — Minor / Obvious
Style choice, not very common issue, or hard to enforce

28/76

Header Files and

#include

Header Files

% Every include must be self-contained
- include every header you need directly
- do not rely on recursive #include
- the project must compile with any include order

* Include as less as possible, especially in header files
- do not include unneeded headers
- minimize dependencies
- minimize code in headers (e.g. use forward declarations)

....................... 29/76

https://llvm.org/docs/CodingStandards.html#self-contained-headers
https://google.github.io/styleguide/cppguide.html#Self_contained_Headers
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#physicaldependencies
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf11-header-files-should-be-self-contained
https://llvm.org/docs/CodingStandards.html#include-as-little-as-possible
https://google.github.io/styleguide/cppguide.html#Include_What_You_Use
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#minimize-code-in-headers
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#physicaldependencies
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/preprocessing
https://micro-os-plus.github.io/develop/coding-style/
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#header-files
https://clang.llvm.org/extra/clang-tidy/checks/#misc/include-cleaner.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf10-avoid-dependencies-on-implicitly-included-names
https://google.github.io/styleguide/cppguide.html#Header_Files
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf5-a-cpp-file-must-include-the-header-files-that-defines-its-interface

Header Files

* #include preprocessor should be placed immediately after the header comment
and include guard LLVM, pOS, CoreCPP

* Use C++ headers instead of C headers. C+-+ headers define additional
functions and their symbols are in the std namespace Hic

<cassert> instead of <assert.h>

<cmath> instead of <math.h>, etc.

30/76

https://llvm.org/docs/CodingStandards.html#include-style
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf4-include-header-files-before-other-declarations-in-a-file
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/general

#include Guard

% Always use an include guard
LLVM, GoOoGLE, CHROMIUM, UNREAL, CORECPP

= macro include guard vs. #pragma once

- Use macro include guard if portability is a very strong requirement
LLVM, GOOGLE, CHROMIUM, CORECPP, MoOzILLA, HIC

- #pragma once otherwise WEBKIT, UNREAL

https://llvm.org/docs/CodingStandards.html#header-guard
https://google.github.io/styleguide/cppguide.html#The__define_Guard
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#file-headers
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#physicaldependencies
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf8-use-include-guards-for-all-header-files
https://llvm.org/docs/CodingStandards.html#header-guard
https://google.github.io/styleguide/cppguide.html#The__define_Guard
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#file-headers
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf8-use-include-guards-for-all-header-files
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#header-files
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/preprocessing
https://webkit.org/code-style-guidelines/#header-guards
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#physicaldependencies
https://google.github.io/styleguide/cppguide.html#The__define_Guard

<>

€.g. #include "directoryl/header.hpp"

syntax
Any external code WEBKIT
Only where strictly required GooGLE, Hic, MoziLLAa, CORECPP

C/C++ standard library headers #include <iostream>
POSIX/Linux/Windows system headers (e.g. <unistd.h> and <windows.h>

32/76

https://google.github.io/styleguide/cppguide.html#Names_and_Order_of_Includes
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#header-files
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/preprocessing
https://webkit.org/code-style-guidelines/#include-system
https://google.github.io/styleguide/cppguide.html#Names_and_Order_of_Includes
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/preprocessing
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#header-files
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf11-header-files-should-be-self-contained

Order of #include

LLVM, WEBKIT, MoziLLA, CORECPP

(1) Main module/interface header, if exists (it is only one)
= space

(2) Current project includes
= space

(3) Third party includes
= space

(4) System includes

Motivation: System /third party includes are self-contained, local includes might not

https://llvm.org/docs/CodingStandards.html#include-style
https://webkit.org/code-style-guidelines/#include-system
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#header-files
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf1-use-a-cpp-suffix-for-code-files-and-h-for-interface-files-if-your-project-doesnt-already-follow-another-convention
https://google.github.io/styleguide/cppguide.html#Names_and_Order_of_Includes
https://google.github.io/styleguide/cppguide.html#Names_and_Order_of_Includes
https://webkit.org/code-style-guidelines/#include-others

#include - Other Issues

= Report at least one function used for each include. It helps to identify unused
headers

<iostream> // std::cout, std::cin

= Forward declarations vs. #includes

» Prefer #include : safer GOOGLE

34/76

https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#forward-declarations-vs_includes
https://google.github.io/styleguide/cppguide.html#Forward_Declarations

Common Header/Source Filename Conventions

= b .c .cc GOOGLE, pOS(.h)
= .hh .cc (rare)
= .hpp .cpp #OS(. cpp)
= .hxx .cxx (rare)

35/76

https://google.github.io/styleguide/cppguide.html#Header_Files
https://micro-os-plus.github.io/develop/coding-style/
https://micro-os-plus.github.io/develop/coding-style/

// [LICENSE]
#4fndef PROJECT A_MY HEADER
#define PROJECT A_MY HEADER

#include

#include

#1include
#include

#1include

#1include

v/

"my_class.hpp"

"my_dir/my_headerA.
"my_dir/my_headerB.

<cmath>
<iostream>

<vector>

// MyClass

[blank
hpp" // npA
hpp" // np:

[blank

// std

// std

// std

#endif // PROJECT_A_MY_ HEADER

line]

::Classd, npB::f2()

10
line]
::fabs ()
::cout

::vector

Preprocessing

Macro 1/3

% Avoid defining macros, especially in headers GOOCLE

- Do not use macro for enumerators, constants, and functions

% Always put macros after #include statements 1OS

% Macros should be unique names, e.g. use a prefix for all macros related to a
project MYPROJECT_MACRO GOOGLE, UNREAL, CORECPP

% #undef macros wherever possible GOOGLE

- Even in the source files if unity build is used (merging multiple source files to

improve compile time)
37/76

https://google.github.io/styleguide/cppguide.html#Preprocessor_Macros
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es31-dont-use-macros-for-constants-or-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum1-prefer-enumerations-over-macros
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Preprocessor_Macros
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es33-if-you-must-use-macros-give-them-unique-names
https://google.github.io/styleguide/cppguide.html#Preprocessor_Macros

Macro

2/3

Always use curly brackets for multi-line macro CLANG-TIDY
#define INCREMENT TWO(z, y) (z)++; (y)++

if (do_increment)
INCREMENT_TWO(a, b); // (b)++ will be executed unconditionally

#define INCREMENT TWOO(z, y) \

{ \
(z)++; \
(y)++; \
Jr
Macro shall not have side effect CLANG-TIDY

#define MIN(X, Y) (X <Y 2?2 X : Y) // MIN(i++) -> increased twice

38/76

https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/multiple-statement-macro.html
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/macro-repeated-side-effects.html

Macro 3/3

% In the definition of a function-like macro, each instance of a parameter shall be
enclosed in parentheses to prevent unexpected expressions 1OS, CLANG-TIDY
#define ADD(z, y) ((z) + (y))

* Prefer checking macro values. It prevents mistakes deriving from missing

headers

#define MACRO 1 // defined in another header
Yttt
#4f MACRO // instead of #if defined(MACRO)

= Put macros outside namespaces as they don't have a scope

39/76

https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/macro-parentheses.html

Preprocessing Statements

* Close #endif with a comment with the respective condition of the first #if
#4f defined (MACRO)

#endif // defined(MACRO)

* The hash mark that starts a preprocessor directive should always be at the
beginning of the line GOOCLE

#4f defined (MACRO)
define MACRO2
#endaf

40/76

https://google.github.io/styleguide/cppguide.html#Preprocessor_Directives

Preprocessing Statements 2/2

* Avoid conditional #include when possible MoziLrA, CHROMIUM

» Prefer #if defined(MACRO) instead of #ifdef MACRO

Improve readability, help grep-like utils, and it is uniform with multiple conditions
#4f defined (MACRO1) && defined(MACRO2)

= Place the \ rightmost for multi-line preprocessing statements
#define MACRO2 \

macro_def. ..

41/76

https://firefox-source-docs.mozilla.org/code-quality/coding-style/using_cxx_in_firefox_code.html#avoid-conditional-includes-when-possible
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#minimizing-preprocessor-conditionals

Variables

Variables 1/2

% Always initialize variables in the declaration

% Place variables in the narrowest scope possible. Declare variables close to the
first use GOOGLE, CORECPP;, CORECPP,, CORECPP3

= |t is allowed to declare multiple variables in the same line for improving the
readability, except for pointer or reference GOOCLE

42/76

https://google.github.io/styleguide/cppguide.html#Local_Variables
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es20-always-initialize-an-object
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/statements
https://micro-os-plus.github.io/develop/coding-style/
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP53-CPP.+Do+not+read+uninitialized+memory
https://clang.llvm.org/extra/clang-tidy/checks/#checks/cppcoreguidelines/init-variables.html
https://google.github.io/styleguide/cppguide.html#Local_Variables
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es5-keep-scopes-small
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es6-declare-names-in-for-statement-initializers-and-conditions-to-limit-scope
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nr1-dont-insist-that-all-declarations-should-be-at-the-top-of-a-function
https://google.github.io/styleguide/cppguide.html#Pointer_and_Reference_Expressions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es10-declare-one-name-only-per-declaration

Variables 2/2

= Use assignment syntax = when performing “simple” initialization, {} otherwise

CHRrROMIUM, CORECPP

= [nitialize variables with =, constructors with {} MoziLLA

= Variables with narrow scope need by if , while, for statements should
normally be declared within those statements if (int* ptr = £0)) .
Even better with C++17 initialization statements, e.g.

if (auto it = m.find(10); it !'= m.end()) GOOGLE
* Precede boolean values with words like is and did WEBKIT, CHROMIUM
= Use \O to indicate the null character GOOGLE

char n = '\0';

https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#variable-initialization
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es23-prefer-the--initializer-syntax
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://google.github.io/styleguide/cppguide.html#Local_Variables
https://webkit.org/code-style-guidelines/#names-bool
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/blink-c++.md#precede-boolean-values-with-words-like-is_and-did
https://google.github.io/styleguide/cppguide.html#0_and_nullptr/NULL

static Global Variables

e.g. std::string str = is not trivially destructible

- static local variables with dynamic initialization are allowed

* Avoid static global variables unless they are trivially constructible and
destructible LLVM

* Avoid non- const static global variables Hic, MoziLLA, CORECPP

Constant initialization of static global variables should be marked with
constexpr or constinit GOOGLE, CLANG-TIDY

static global variables should only be initialized by constant expressions (e.g.
constexpr functions/lambdas) GOOGLE, CLANG-T1DYa4/76

https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
https://llvm.org/docs/CodingStandards.html#do-not-use-static-constructors
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://firefox-source-docs.mozilla.org/code-quality/coding-style/using_cxx_in_firefox_code.html#don-t-use-static-constructors
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global
https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/avoid-non-const-global-variables.html
https://google.github.io/styleguide/cppguide.html#Local_Variables
https://clang.llvm.org/extra/clang-tidy/checks/#statically-constructed-objects.html

Conversions

* Use static_cast instead of old-style cast GOOCLE

= Avoid const_cast to remove const , except when implementing non- const
getters in terms of const getters CHROMIUM

= Use reinterpret_cast to do unsafe conversions between pointer types, and
from/to integer types GOOGLE

* Use std::bit_cast to interpret the raw bits of a value using a different type of

the same size QQQ.(?.L.E.45/76

https://google.github.io/styleguide/cppguide.html#Casting
https://google.github.io/styleguide/cppguide.html#Casting
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#use-correctly
https://google.github.io/styleguide/cppguide.html#Casting
https://google.github.io/styleguide/cppguide.html#Casting

Enumerators

Enumerators

% Prefer enumerators over macros CORECPP

* Prefer enum class over plain enum UNREAL, OS, CORECPP

= Specify the underlying type and enumerator values only when necessary
CoreECppP;, CORECPP>

enum class MyEnum : int16_t { Abc = 1, Def = 2 }; // bad

= Do not cast an expression to an enumeration type
Color c = static_cast<Color>(3) Hic

= Don't use ALL_CAPS for enumerators CoreCppP

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum1-prefer-enumerations-over-macros
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#strongly-typedenums
https://micro-os-plus.github.io/develop/naming-conventions/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum3-prefer-class-enums-over-plain-enums
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum7-specify-the-underlying-type-of-an-enumeration-only-when-necessary
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum8-specify-enumerator-values-only-when-necessary
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#enum5-dont-use-all_caps-for-enumerators

Arithmetic Types

Signed vs. Unsigned Integral Types

% Don’t mix signed and unsigned arithmetic CoreCprpP, uOS
* Prefer signed integers whatever possible GooGLE, pOS, CorRECPP,
* Use unsigned integer only for bitwise operations GOOGLE, OS, CORECPP
* Do not shift < signed operands Hic, pOS, CLANG-TIDY
¥ size_t vs. int64_t

- Use int64_t instead of size_t for object counts and loop indices GOOCGLE

- Use size_t for object and allocation sizes, object counts, array and pointer offsets,
vector indices, and so on (to avoid overflow undefined behavior) CHROMIUM

Do not apply unary minus to operands of unsigned type, e.g. -1u Hi1cA7/76

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es100-dont-mix-signed-and-unsigned-arithmetic
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es102-use-signed-types-for-arithmetic
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es101-use-unsigned-types-for-bit-manipulation
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#hicpp/signed-bitwise.html
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#types
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions

Integral Types Conversion

* Avoid silent narrowing conversions, e.g, int i += 0.1; CLANG-TIDY

= Use brace initialization to convert/define constant arithmetic types
(narrowing) e.g. int64_t{MyConstant} GOOGLE

= Use intptr_t to convert raw pointers to integers GOOCLE

= Be aware of implicit cast to int

48/76

https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/narrowing-conversions.html
https://google.github.io/styleguide/cppguide.html#Casting
https://google.github.io/styleguide/cppguide.html#64-bit_Portability

Integral Types: Size and Other Issues

Size:
% Except int, use fixed-width integer type (e.g. int64_t, int8_t, etc.)

* Prefer 32/64-bit signed integers over smaller data types GOOCLE

» 64-bit integers add no/little overhead on 64-bit platforms

Other issues:

= Avoid redundant type, e.g. unsigned int, signed int WEBKIT

https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#types
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/basic-concepts
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#google/runtime-int.html
https://google.github.io/styleguide/cppguide.html#Integer_Types
https://webkit.org/code-style-guidelines/#types-unsigned

Floating-Point Types

* Floating point numbers shall not be converted to integers except through
use of standard library functions std::floor , std::ceil pOS, Hic

double d = ...;
int i =d; // BAD, prefer std::floor(d)

* Don’t convert an expression of wider floating-point type to a narrower

floating-point type Hic
float f1 = 1.0; // Bad
float f2 = 1.0F; // Ok

50/76

https://micro-os-plus.github.io/develop/coding-style/
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/standard-conversions
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/standard-conversions

Floating-Point Types

% Do not directly compare floating point ==, <, etc. Hic, unOS

51/76

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Floating_Literals
https://webkit.org/code-style-guidelines/#zero-comparison

Functions

Functions

% A function should perform a single logical operation to promote simple
understanding, testing, and reuse CoRrReCPP

% Split up large functions (> 40) into logical sub-functions for improving
readability and compile time UNREAL, GOOGLE, CORECPP, CLANG-TIDY

* Prefer pure functions, namely functions that always returns the same result
given the same input arguments (no external dependencies) and does not modify
any state or have side effects outside of returning a value CoreCppP

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://google.github.io/styleguide/cppguide.html#Write_Short_Functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f3-keep-functions-short-and-simple
https://clang.llvm.org/extra/clang-tidy/checks/#readability/function-size.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f8-prefer-pure-functions

Functions

* QOverload a function when there are no semantic differences between
variants GOOGLE

53/76

https://google.github.io/styleguide/cppguide.html#Function_Overloading
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f51-where-there-is-a-choice-prefer-default-arguments-over-overloading
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/definitions
https://google.github.io/styleguide/cppguide.html#Function_Overloading

Functions Parameters

% Don’t declare functions with an excessive number of parameters. Use a
wrapper structure instead Hic, CoreCppP, UNREAL, uOS

* Specify all input-only parameters before any output parameters GOOGLE

* Avoid adjacent parameters of the same type — easy to swap by mistake
CoreCPP

54/76

https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/definitions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i23-keep-the-number-of-function-arguments-low
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Inputs_and_Outputs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i24-avoid-adjacent-parameters-that-can-be-invoked-by-the-same-arguments-in-either-order-with-different-meaning

Functions Parameters - Input/Output

% Pass-by- const -pointer or reference for input parameters are not intended to
be modified by the function GOOGLE, UNREAL

which case it should be passed-by-pointer GOOCLE

https://google.github.io/styleguide/cppguide.html#Use_of_const
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://google.github.io/styleguide/cppguide.html#Inputs_and_Outputs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f17-for-in-out-parameters-pass-by-reference-to-non-const
https://google.github.io/styleguide/cppguide.html#Inputs_and_Outputs

Functions Parameters - By-Value, By-Rvalue 3/4

= Prefer pass-by-value for small and trivially copyable types CoRrgCpp, HiC

= Don't pass-by- const -value, especially in the declaration (same signature of
pass-by-value) GOOGLE

(opposite) AUTOSAR

* Don’t use rvalue references && except for move constructors and move
assignment operators GOOCLE

56,76

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f16-for-in-parameters-pass-cheaply-copied-types-by-value-and-others-by-reference-to-const
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/definitions
https://google.github.io/styleguide/cppguide.html#Use_of_const
https://google.github.io/styleguide/cppguide.html#Rvalue_references

Functions Parameters 4/4

* Boolean parameters should be avoided UNREAL

s Prefer enum to bool on function parameters WEBKIT, CHROMIUM

= Parameter names should be the same for declaration and definition
CrLAaNG-TIDY, HIC

= All parameters should be aligned if they do not fit in a single line (especially in the
declaration)

void f(int a,
const int* b);

57/76

https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine?application_version=5.4
https://webkit.org/code-style-guidelines/#names-enum-to-bool
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/blink-c++.md#prefer-enums-or-strongaliases-to-bare-bools-for-function-parameters
https://clang.llvm.org/extra/clang-tidy/checks/#inconsistent-declaration-parameter-name.html
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/definitions

Functions Arguments

= Consider introducing variables to describe the meaning of arguments GOOGLE
f(true); // BAD
bool enable_checks = true; // GOOD
f (enable_checks) ;

= Use argument comment to describe “magic number” arguments
CLANG-TIDY, GOOGLE

void f(bool enable_checks);
f(/*enable_checks=*/true) ;

= All arguments should be aligned to the first one if they do not fit in a single line
GOOGLE

my_function(my varl, my_var2,
my_var3) ;

58/76

https://google.github.io/styleguide/cppguide.html#Function_Argument_Comments
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/argument-comment.html
https://google.github.io/styleguide/cppguide.html#Function_Argument_Comments
https://google.github.io/styleguide/cppguide.html#Function_Calls

Function Return Values 1/2

* Prefer to return values rather than output parameters GooGLE, CORECPP

* Prefer to return by-value GOOGLE

= Prefer to return a struct /structure binding to return multiple output values
CORECPP

= Don't return const values CoRECPP

» Use trailing return types only where using the ordinary syntax is impractical or
much less readable GooGLE, WEBKIT

int foo(int x) instead of auto foo(int x) -> int

https://google.github.io/styleguide/cppguide.html#Inputs_and_Outputs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f20-for-out-output-values-prefer-return-values-to-output-parameters
https://google.github.io/styleguide/cppguide.html#Inputs_and_Outputs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f21-to-return-multiple-out-values-prefer-returning-a-struct
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f26-use-a-unique_ptrt-to-transfer-ownership-where-a-pointer-is-needed
https://google.github.io/styleguide/cppguide.html#trailing_return
https://webkit.org/code-style-guidelines/#function-return-arrow

Function Return Values 2/2

% Transfer ownership with smart pointers. Never return pointers for new objects.
Use std::unique_ptr instead GOOGLE, CHROMIUM, CORECPP

int* £() { return new int[10]; } // wrong!!
std: :unique_ptr<int> £() { return new int[10]; } // correct

void FooConsumer (std::unique_ptr<Foo> ptr); // correct

% Never return reference/pointer for local objects. Return a pointer only to
indicate a position CorReECPrP1, CORECPPy, GOOGLE, SEI CERT

60/76

https://google.github.io/styleguide/cppguide.html#Ownership_and_Smart_Pointers
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#object-ownership-and-calling-conventions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f26-use-a-unique_ptrt-to-transfer-ownership-where-a-pointer-is-needed
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f43-never-directly-or-indirectly-return-a-pointer-or-a-reference-to-a-local-object
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f42-return-a-t-to-indicate-a-position-only
https://google.github.io/styleguide/cppguide.html#Inputs_and_Outputs
https://wiki.sei.cmu.edu/confluence/display/cplusplus/EXP54-CPP.+Do+not+access+an+object+outside+of+its+lifetime

Function Specifiers

= If a function might have to be evaluated at compile time, declare it constexpr
CoRreECPP;, CORECPP>

= Do not separate declaration and definition for template and inline functions
GOOGLE

= Use inline only for small functions (e.g. < 10 lines, no loops or switch
statements) GooGLE, Hic, CORECPP

= Do not use inline when declaring a function (only in the definition)

= Do not use inline when defining a function in a class definition LLVM

= Use noexcept when it is useful and correct GOOGLES1/76

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f4-if-a-function-might-have-to-be-evaluated-at-compile-time-declare-it-constexpr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t123-use-constexpr-functions-to-compute-values-at-compile-time
https://google.github.io/styleguide/cppguide.html#Header_Files
https://google.github.io/styleguide/cppguide.html#Inline_Functions
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/declarations
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f5-if-a-function-is-very-small-and-time-critical-declare-it-inline
https://llvm.org/docs/CodingStandards.html#don-t-use-inline-when-defining-a-function-in-a-class-definition
https://google.github.io/styleguide/cppguide.html#noexcept

Lambda Expressions

* Prefer explicit captures if the lambda may escape the current scope GOOGLE

= Use default capture by reference ([&]) only when the lifetime of the lambda is
obviously shorter than any potential captures GooGLE, CORECPP

= Do not capture variables implicitly in a lambda, e.g. [&]{body} Hic

= Omit parentheses for a C++ lambda whenever possible

[this] { return m_member; } WEBKIT
(opposite) Hic
int a[] { ++i }; // Not a lambda

| { ++i; }; // A lambda

62/76

https://google.github.io/styleguide/cppguide.html#Lambda_expressions
https://google.github.io/styleguide/cppguide.html#Lambda_expressions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f52-prefer-capturing-by-reference-in-lambdas-that-will-be-used-locally-including-passed-to-algorithms
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions
https://webkit.org/code-style-guidelines/#punctuation-omit-lambda-paren
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-expressions

Structs and Classes

struct vs. class

* Use struct only for passive objects that carry data; everything else is

class GOOGLE, CORECPP

* Use class rather than struct if any member is non- public CORECPP

* Prefer struct instead of pair or tuple GOOGLE

63/76

https://google.github.io/styleguide/cppguide.html#Structs_vs._Classes
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c2-use-class-if-the-class-has-an-invariant-use-struct-if-the-data-members-can-vary-independently
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c7-dont-define-a-class-or-enum-and-declare-a-variable-of-its-type-in-the-same-statement
https://google.github.io/styleguide/cppguide.html#Structs_vs._Tuples

Initialization

X

Objects are fully initialized by constructor calls and all resources acquired
must be released by the class’s destructor
GooGLE, CORECPP1 CORECPP, HIC, CLANG-TIDY
Prefer in-class initializers to member initializers
CHROMIUM, CORECPP1, CORECEPy CLANG-TIDY
Initialize member variables in the order of member declaration
CoreCppP, Hic

Prefer initialization to assignment in constructors CoreCPP
struct A {
int _x;

AGint) { x = _x; } // bad 64/76

https://google.github.io/styleguide/cppguide.html#Doing_Work_in_Constructors
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c41-a-constructor-should-create-a-fully-initialized-object
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c31-all-resources-acquired-by-a-class-must-be-released-by-the-classs-destructor
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/special-member-functions
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/pro-type-member-init.html
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#initialize-members-in-the-declaration-where-possible
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c37-make-destructors-noexcept
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c48-prefer-default-member-initializers-to-member-initializers-in-constructors-for-constant-initializers
https://clang.llvm.org/extra/clang-tidy/checks/#cppcoreguidelines/prefer-member-initializer.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c47-define-and-initialize-data-members-in-the-order-of-member-declaration
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/special-member-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c48-prefer-default-member-initializers-to-member-initializers-in-constructors-for-constant-initializers

Braced Initializer Lists

= |nitialize variables with =, constructors with {} MoziLLA

» Prefer braced initializer lists {} for constructors to clearly distinguish from
function calls, avoid implicit narrowing conversion, and avoid the most vexing
parse problem CoreCprpP1, CORECPPy, CORECPP3

void f(float x) {
int v(int(x)); // function declaration

int v{int(x)}; // wariable

= Do not use braced initializer lists {} for constructors (at least for containers, e.g.
std::vector). It can be confused with std::initializer_list LLVM

https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es23-prefer-the--initializer-syntax
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#es64-use-the-tenotation-for-construction
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#t43-prefer-using-over-typedef-for-defining-aliases
https://llvm.org/docs/CodingStandards.html#do-not-use-braced-initializer-lists-to-call-a-constructor

Special Member Functions

* Use delegating constructors to represent common actions for all
constructors of a class CorgCrpp, HiC

* Mark destructor and move constructor/assignment noexcept
CoORECPP;, CORECPP>, Hicy, Hicy, SEI CERT, CLANG-TIDY

* Avoid implicit conversions. Use the explicit keyword for conversion
operators and constructors, especially single argument constructors

66,76

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c51-use-delegating-constructors-to-represent-common-actions-for-all-constructors-of-a-class
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/special-member-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c37-make-destructors-noexcept
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c66-make-move-operations-noexcept
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/special-member-functions
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard-exception-handling
https://wiki.sei.cmu.edu/confluence/display/cplusplus/DCL57-CPP.+Do+not+let+exceptions+escape+from+destructors+or+deallocation+functions
https://clang.llvm.org/extra/clang-tidy/checks/#bugprone/exception-escape.html
https://google.github.io/styleguide/cppguide.html#Implicit_Conversions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c164-avoid-implicit-conversion-operators
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/special-member-functions
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#explicit-constructor.html

=default, =delete

* Indicate if a non-trivial class is copyable, move-only, or neither copyable
nor movable by using = default /= delete for constructors and assignment
operators if not directly implemented

GOOGLE, MoziLLA, CHROMIUM, CORECPP

* Prefer = default constructors over user-defined / implicit default
constructors MoziLLAa, CHrROMIUM, CORECPP, HIC

* Use = delete for mark deleted functions CoreCprp, Hic

https://google.github.io/styleguide/cppguide.html#Copyable_Movable_Types
https://firefox-source-docs.mozilla.org/code-quality/coding-style/using_cxx_in_firefox_code.html#always-declare-a-copy-constructor-and-assignment-operator
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#explicitly-declare-class-copyability_movability
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c21-if-you-define-or-delete-any-copy-move-or-destructor-function-define-or-delete-them-all
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-classes
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#prefer-to-use
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c80-use-default-if-you-have-to-be-explicit-about-using-the-default-semantics
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/special-member-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c81-use-delete-when-you-want-to-disable-default-behavior-without-wanting-an-alternative
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/special-member-functions

Structs and Classes - Other Issues 1/2

* Don’t return pointers or references to non- const objects from const
methods CHROMIUM

* Use const functions wherever possible

* Make a function a member only if it needs direct access to the representation of a
class. Use a static function or a free-function otherwise CoRreCppP

= Don't define a class or enum and declare a variable of its type in the same
statement, e.g. struct Data /*...*/ data; CORECPP

https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#use-correctly
https://google.github.io/styleguide/cppguide.html#Use_of_const
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#use-correctly
https://micro-os-plus.github.io/develop/coding-style/
https://clang.llvm.org/extra/clang-tidy/checks/#readability/make-member-function-const.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c4-make-a-function-a-member-only-if-it-needs-direct-access-to-the-representation-of-a-class
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c7-dont-define-a-class-or-enum-and-declare-a-variable-of-its-type-in-the-same-statement

Structs and Classes - Other Issues 2/2

* Do not overload operators with special semantics && , =~ &&, ||, ,, &,
operator"" (user-defined literals) GooGLE, Hic, nOS

* Prefer to define non-modifying binary operators as non-member functions
e.g. operator== GOOGLE, Hic

* Place free-functions that interact with a class in the same namespace, e.g.
operator== CoORECPP

* Declare data members private, unless they are constants. This simplifies
reasoning about invariants GOOGLE, Hic

https://google.github.io/styleguide/cppguide.html#Operator_Overloading
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/overloading
https://micro-os-plus.github.io/develop/coding-style/
https://google.github.io/styleguide/cppguide.html#Operator_Overloading
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/overloading
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c5-place-helper-functions-in-the-same-namespace-as-the-class-they-support
https://google.github.io/styleguide/cppguide.html#Access_Control
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/member-access-control

Inheritance 1/2

% Avoid virtual method calls in constructors GOOGLE, CORECPP, SEI CERT

% Default arguments are allowed only on non-virtual functions
GoocLE, CoreCpp, Hic, CLANG-TIDY

% A class with a virtual function should have a virtual or protected destructor
(e.g. interfaces and abstract classes) CORECPP

*

Always use override/final function member keywords
GoOGLE, WEBKIT, MozILLA, UNREAL, Hic, CLANG-TIDY, CORECPP

Do not use virtual with final/override (implicit) 70/76

https://google.github.io/styleguide/cppguide.html#Doing_Work_in_Constructors
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c82-dont-call-virtual-functions-in-constructors-and-destructors
https://wiki.sei.cmu.edu/confluence/display/cplusplus/OOP50-CPP.+Do+not+invoke+virtual+functions+from+constructors+or+destructors
https://google.github.io/styleguide/cppguide.html#Default_Arguments
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c140-do-not-provide-different-default-arguments-for-a-virtual-function-and-an-overrider
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/classes
https://clang.llvm.org/extra/clang-tidy/checks/#google/default-arguments.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c35-a-base-class-destructor-should-be-either-public-and-virtual-or-protected-and-non-virtual
https://google.github.io/styleguide/cppguide.html#Inheritance
https://webkit.org/code-style-guidelines/#override-methods
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine#apidesignguidelines
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/derived-classes
https://clang.llvm.org/extra/clang-tidy/checks/#modernize/use-override.html
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c139-use-final-on-classes-sparingly

Inheritance 2/2

* Provide a virtual method anchor (.cpp implementation) for classes in
headers LLVM

* Multiple implementation inheritance is discouraged
GoocGLE, CHrOMIUM, Hic, CLANG-TIDY

* Prefer composition to inheritance GOOGLE

* Inheritance should be public GOOGLE

71/76

https://llvm.org/docs/CodingStandards.html#provide-a-virtual-method-anchor-for-classes-in-headers
https://google.github.io/styleguide/cppguide.html#Inheritance
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++.md#multiple-inheritance
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard/derived-classes
https://clang.llvm.org/extra/clang-tidy/checks/#fuchsia/multiple-inheritance.html
https://google.github.io/styleguide/cppguide.html#Inheritance
https://google.github.io/styleguide/cppguide.html#Inheritance
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c67-a-polymorphic-class-should-suppress-public-copymove

Structs and Classes - Style

% Declare class data members in special way

- It helps to keep track of class variables and local function variables

- The first character is helpful in filtering through the list of available variables

Examples:
- Trailing underscore (e.g. member_var_) GOOGLE, OS, CHROMIUM
- Leading underscore (e.g. _member_var) .NET
- Public members (e.g. m_member_var , mVar) WEBKIT, MOZILLA
- Static members (e.g. s_static_var , sVar) WEBKIT, MOZILLA

PERSONAL COMMENT: Prefer _member_var as | read left-to-right and is less invasive

= Class members are indented GOOGLE

https://google.github.io/styleguide/cppguide.html#Variable_Names
https://micro-os-plus.github.io/develop/naming-conventions/
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/c++-dos-and-donts.md#initialize-members-in-the-declaration-where-possible
https://webkit.org/code-style-guidelines/#names-data-members
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://webkit.org/code-style-guidelines/#names-data-members
https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#variable-prefixes
https://google.github.io/styleguide/cppguide.html#Class_Format

Structs and Classes - Style 2/5

* Class inheritance declarations order:

public, protected, private

* Declarations order GOOGLE

(
(
(
(
(

(
(

a
b
c

d

€]

(f

g
h

)

)
)
)
)
)
)
)

Types and type aliases

(Optionally, for structs only) non-static data members
Static constants

Factory functions

Constructors and assignment operators

Destructor

All other functions

All other data members
73/76

https://google.github.io/styleguide/cppguide.html#Declaration_Order
https://micro-os-plus.github.io/develop/coding-style/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#nl16-use-a-conventional-class-member-declaration-order
https://google.github.io/styleguide/cppguide.html#Declaration_Order

Structs and Classes - Style

struct A { // passive data structure
int X;

class B {
public:
BO;

void public_function() ;

protected:
int _a; // in general, it is not public in derived classes

void _protected_function(); // "protected_function()" is not wrong
// it may be public in derived classes

private:
int _X;
float _y;
void _private_function(); 7476

13

Structs and Classes - Style

= |n the constructor, each member of the initializer list should be indented on a
separate line, e.g. GOOGLE, WEBKIT

A::A(int x1, int y1) :
x{x1}, // double indentation
yiy1} {
body
Ir
// or
A::A(int x1, int y1)
:ox{x1},
yiy1} {
body

75/76

https://google.github.io/styleguide/cppguide.html#Constructor_Initializer_Lists
https://webkit.org/code-style-guidelines/#punctuation-member-init

Structs and Classes - Style

= |f possible, avoid this-> keyword

= Prefer empty() method over size() to check if a container has no items
MoOZILLA

= Do not use get for observer methods (const) without parameters, e.g.

get_size() — size() WEBKIT

= Precede getters that return values via out-arguments with the word get
CHROMIUM

= Precede setters with the word set . Use bare words for getters 7676
WEBKIT. CHROMIUM

https://firefox-source-docs.mozilla.org/code-quality/coding-style/coding_style_cpp.html#c-c-practices
https://webkit.org/code-style-guidelines/#names-setter-getter
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/blink-c++.md#precede-getters-that-return-values-via-out_arguments-with-the-word-get
https://webkit.org/code-style-guidelines/#names-setter-getter
https://chromium.googlesource.com/chromium/src/+/master/styleguide/c++/blink-c++.md#precede-setters-with-the-word-set_use-bare-words-for-getters

	C++ Project Organization
	Project Directories
	Project Files
	``Common'' Project Organization Notes
	Alternative - ``Canonical'' Project Organization

	Coding Styles and Conventions
	Overview
	Popular Coding Styles

	Header Files and #include
	#include Guard
	#include Syntax
	Order of #include
	Common Header/Source Filename Conventions

	Preprocessing
	Macro
	Preprocessing Statements

	Variables
	static Global Variables
	Conversions

	Enumerators
	Arithmetic Types
	Signed vs. Unsigned Integral Types
	Integral Types Conversion
	Integral Types: Size and Other Issues
	Floating-Point Types

	Functions
	Functions Parameters
	Functions Arguments
	Function Return Values
	Function Specifiers
	Lambda Expressions

	Structs and Classes
	struct vs. class
	Initialization
	Braced Initializer Lists
	Special Member Functions
	=default, =delete
	Other Issues
	Inheritance
	Style

