Modern C4+

Programming

14. TRANSLATION UNITS I1

INCLUDE, MODULE, AND COMPILATION

Federico Busato
2026-01-06



Table of Contents

#include Issues
m Include Guard
m Forward Declaration
m Circular Dependencies

m Common Linking Errors

1/48



Table of Contents

C++420 Modules
m Overview
m Terminology

m Visibility and Reachability

Module Unit Types

m Keywords

m Global Module Fragment
m Private Module Fragment
m Header Module Unit

m Module Partitions
2/48



Table of Contents

Compiling Multiple Translation Units
m Fundamental Compiler Flags

m Compile Methods

3/48



Table of Contents

A Libraries in C4+
m Static Library
m Building Static Libraries
m Using Static Libraries
m Dynamic Library
m Building Dynamic Libraries
m Using Dynamic Libraries
m Application Binary Interface (ABI)
m Demangling
m Find Dynamic Library Dependencies

m Analyze Object/Executable Symbols 4/48



#include Issues



Include Guard 1/3

The include guard avoids the problem of multiple inclusions of a header file in a
translation unit
header.hpp:

#4fndef HEADER_HPP // include guard
#define HEADER_HPP

. many lines of code ...

#endif // HEADER_HPP

#pragma once preprocessor directive is an alternative to the include guard to force current
file to be included only once in a translation unit

= #pragma once is less portable but less verbose and compile faster than the include
guard

The include guard/#pragma once should be used in every header file 5/48



Include Guard

header_A.hpp

Common case: header_B.hpp

main.cpp
6/48



Include Guard

header_A.hpp:

#pragma once  // prevent "multiple definitions"” linking error

struct A {
18

header_B.hpp:
#include "header_A.hpp" // included here

struct B {
A a;
I8

main.cpp:
#include "header_A.hpp" // .. and included here
#include "header_B.hpp"
int main() {
A a; // ok, here we need "header_A.hpp"

B b; // ok, here we need "header_ B.hpp" 7/48



Forward Declaration

Forward declaration is a declaration of an identifier for which a complete definition

has not yet given. “forward” means that an entity is declared before it is defined

void £(); // function forward declaration

class A; // class forward declaration

int main() {
£Q0; // ok, f(O is defined in the translation unit
// A a; // compiler error no definition (incomplete type)
// e.g. the compiler is not able to deduce the size of A
Ax a; // ok

void £() {} // definition of f()

class A {}; // definition of A()
8/48



rward Declaration vs. #

Advantages:
= Forward declarations can save compile time as #include forces the compiler to open

more files and process more input

= Forward declarations can save on unnecessary recompilation. #include can force your
code to be recompiled more often, due to unrelated changes in the header

Disadvantages:
= Forward declarations can hide a dependency, allowing user code to skip necessary

recompilation when headers change
= A forward declaration may be broken by subsequent changes to the library

= Forward declaring multiple symbols from a header can be more verbose than simply
#including the header
9/48

google.github.io/styleguide/cppguide.html#Forward_Declarations


https://google.github.io/styleguide/cppguide.html#Forward_Declarations

Circular Dependencies

A circular dependency is a relation between two or more modules which either
directly or indirectly depend on each other to function properly

header_B.hppo\

header_C.hpp
»

.
.
.

header_A.hpp ¥

!

main.cpp

Circular dependencies can be solved by using forward declaration, or better, by
rethinking the project organization 10/48



Circular Dependencies

header_A.hpp:
#pragma once // first include
#1include "header_B.hpp"
class A {
B* b;
};

header_B.hpp:
#pragma once // second include
#include "header_C.hpp"
class B {
C* c;

8

header_C.hpp:

#pragma once // third include

#include "header_A.hpp"

class C { // compile error "header_A.hpp": already included by "main.cpp"

Ax a; // the compiler does not know the meaning of "A" 11/48
};



Circular Dependencies (fix)

header_A.hpp:
#pragma once

class B; // forward declaration
// mote: does not include "header_B.hpp"
class A {
B* b;
I

header_B.hpp:
#pragma once
class C; // forward declaration
class B {
Cx c;

18

header_C.hpp:
#pragma once
class A; // forward declaration
class C {
Ax a; 12/48
8



Common Linking Errors

Very common linking errors:

= undefined reference

Solutions:

- Check if the right headers and sources are included
- Break circular dependencies (could be hard to find)

= multiple definitions

Solutions:

- inline function, variable definition or extern declaration
- Add include guard/ #pragma once to header files
- Place template definition in header file and full specialization in source files

13/48



C++420 Modules



C++20 Modules

The #include problem: The duplication of work - the same header files are
possibly parsed/compiled multiple times and most of the compiled output is later-on
thrown away again by the linker

C++4-20 introduces modules as a robust replacement for plain #include

Module (C++20)

A module is a set of source code files that are compiled independently of the
translation units that import them

Modules allow defining clearer interfaces with a fine-grained control on what to
import and export (similar to Java, Python, Rust, etc.)

14/48



C++20 Modules

Less error-prone than #include :

= No effect on the compilation of the translation unit that imports the module

= Macros, preprocessor directives, and non-exported names declared in a module are
not visible outside the module

= Declarations in the importing translation unit do not participate in overload
resolution or name lookup in the imported module

Other benefits:

= (Much) Faster compile time. After a module is compiled once, the results are
stored in a binary file that describes all the exported types, functions, and

templates
= Smaller binary size. Allow to incorporate only the imported code and not the

whole #include 15/48



References

A Practical Introduction to C++20’s Modules @

= Modules the beginner’s guide
= Understanding C++ Modules @
= Overview of modules in C++&

= Are We Modules Yet? @
Tracking module adoption across the most popular C++ projects, compilers, and
build systems

16/48


https://accu.org/conf-docs/PDFs_2021/hendrik_niemeyer_a_practical_introduction_to_cpp20_modules.pdf
https://meetingcpp.com/mcpp/slides/2019/modules-the-beginners-guide-meetingcpp2019.pdf
https://vector-of-bool.github.io/2019/03/10/modules-1.html
https://learn.microsoft.com/en-us/cpp/cpp/modules-cpp?view=msvc-170
https://arewemodulesyet.org/

Terminology

A module consists of one or more module units

A module unit is a translation unit that contains a module declaration

module my.module.example;

A module name is a concatenation of identifiers joined by dots (the dot carries no
meaning) my.module.example

A module unit purview is the content of the translation unit

A module purview is the set of purviews of a given module name

17/48



Visibility and Reachability

Visibility of names instructs the linker if a symbol can be used by another translation
unit. Visible also means a candidate for name lookup

Reachable of declarations means that the semantic properties of an entity are
available

= Each visible declaration is also reachable

= Not all reachable declarations are also visible

18/48



Reachability Example

Common example: the members of a class are reachable (i.e. can be used) or the class

size is known, but not the class type itself

auto g() {

struct A {

void £() {}

};

return A{};
}
ettt
auto x = g(); // ok
/Ay =90; // compile error, "A" is unknown at this point
x.£0); // ok
sizeof (x) ; // ok

using T = decltype(x); // ok 1o



Module Unit Types

= A module interface unit is a module unit that exports a symbol and/or module
name or module partition name

= A primary module interface unit is a module interface unit that exports the
module name. There must be one and only one primary module interface unit in

a module

= A module implementation unit is a module unit that does not export a module
name or module partition name

A module interface unit should contain only declarations if one or more module
implementation units are present. A module implementation unit
implements/defines the declarations of module interface units

20/48



module specifies that the file is a named module

module my.module; // first code line

import makes a module and its symbols visible in the current file

import my.module; // after module declaration and #include

export makes symbols visible to the files that import the current module

= export module <module_name> makes visible all the exported symbols of a

module. It must appear once per module in the primary module interface unit

= export namespace <namespace> makes visible all symbols in a namespace
= export <entity> makes visible a specific function, class, or variable

= export {<code>} makes visible all symbols in a block

21/48



import Example

#1include <iostream>

int main() {
std: :cout << "Hello World";
¥

Preprocessing size -E: ~1MB
import <iostream>;
int main() {

std::cout << "Hello World";
}

Preprocessing size: 236B (x500)
Compile time: 2x (up to 10x) less

g+t+-12 -std=c++20 -fmodules-ts main.cpp —-x c++-system-header iostream L



export Example - Single Primary Module Interface Unit

my_module.cpp

export module my.example; // make visible all module symbols

export int £1() { return 3; } // ezport function

export namespace my_ns { // exzport namespace and its content
int £2() { return 5; }

}

export { // exzport code block

int £3() { return 2; }
int f4() { return 8; }
+

void internal() {} // NOT exzported. It can be used only internally

23/48



export Example - Two Module Interface Units

my_modulel.cpp Primary Module Interface Unit
export module my.example; // This is the only file that exports all module symbols
export int £1() { return 3; } // ezport function

my_module2.cpp Module Interface Unit

module my.example; // Module declaration but symbols are not exported

export namespace my_ns { // export namespace
int £2() { return 5; }

}

export { // ezport code block?

int £3() { return 2; }
int f4() { return 8; }

}
24/48



export Example - Module Interface and Implementation Units

my_modulel.cpp Primary Module Interface Unit
export module my.example; // This is the only file that exports all module symbols

export int f1(); // exzport function
export { // ezport code block
int £30;

int f4Q);

I

my_module2.cpp Module Implementation Unit

module my.example; // Module declaration but symbols are not exzported

int f1() { return 3; }
int £3() { return 2; }

int f4() { return 8; }
25/48



Keyword Notes

import

= A module implementation unit can import another module, but cannot
export any names. Symbols of the module interface unit are imported implicitly

= All import must appear before any declarations in that module unit and after

module; a export module (if present)

export

= Symbols with internal linkage or no linkage cannot be exported, i.e. anonymous
namespaces and static entities

= The export keyword is used in module interface units only

= The semantic properties associated to exported symbols become reachable 26/48



export import Declaration

Imported modules can be directly re-exported

export module main_module; // Top-level primary module interface unit
export module sub_module; // Primary module interface untt
import main_module;

int main() {
£Q0; // ok, f(O) is visible

27/48



Global Module Fragment

A global module fragment (unnamed module) can be used to include header files in
a module interface when importing them is not possible or preprocessing directives are
needed

module; // start Global Module Fragment

#define ENABLE FAST MATH
#include "my_math.h"

export module my.module; // end Global Module Fragment

Macro definitions or other preprocessing directives are not visible outside the file itself

28/48



Private Module Fragment

A private module fragment allows a module to be represented as a single translation

unit without making all the contents of the module reachable to importers
— A modification of the private module fragment does not cause recompilation

If a module unit contains a private module fragment, it will be the only module unit of
its module

export module my.example;
export int £();

module :private; // start private module fragment

int £ { // definition not reachable from importers of f()
return 42;

29/48



Header Module Unit

Legacy headers can be directly imported with import instead of #include

All declarations are implicitly exported and attached to the global module
(fragment)

= Macros from the header are available for the importer, but macros defined in the
importer have no effect on the imported header

= Importing compiled declarations is faster than #include

C+-+23 will introduce modules for the standard library

30/48



Module Partitions

A module can be organized in jsolated module partitions

Syntax:

export module module_name : partition_name;

= Declarations in any of the partitions are visible within the entire module

= Like common modules, a module partition consists in one module partition
interface unit and zero or more module partition implementation units

= Module partitions are not visible outside the module
= Module partitions do not implicitly import the module interface

= All names exported by partition interface files must be imported and

re-exported by the primary module interface file
31/48



Module Partitions

main_module.ixx

export module main_module;

"

export import :partitionl; // re-export f() to importers of "main_module

export import :partition2; // re-ezport g() to importers of "main_module"

export void h() { intermal(); } // internal() can be directly used

partitionl.ixx

export module module_name:partitionil;

export void £() {}

partition2.ixx

export module module_name:partition2;

export void g() {}

32/48
void internal() {} // not ezported



Compiling Multiple
Translation Units




Fundamental Compiler Flags

Include flag: g++ -I include/ main.cpp -o main.x

= -I: Specify the include path for the project headers

= -isystem: Specify the include path for system (external) headers (warnings
are not emitted)

They can be used multiple times

Important: include and library compiler flags, as well as multiple values in an
environment variable, are evaluated in order from left to right. The first match
suppress the other ones

Compile to a file object: g++ -c source.cpp -o source.o

33/48



Compile Methods

Method 1

Compile all files together (naive):

g++ main.cpp source.cpp -0 main.out

Method 2

Compile each translation unit in a file object:
g++ —C source.cpp -0 Source.o

g++ —-c main.cpp -0 main.o

Multiple objects can be compiled in parallel

Link all file objects:

g++ main.o source.o -o main.out

34/48



Libraries in C4+4



Static Library

A static library is a set of object files (just the concatenation) that are directly linked
into the final executable. If a program is compiled with a static library, all the
functionality of the static library becomes part of final executable

— A static library cannot be modified without re-link the final executable
— Increase the size of the final executable

+ The linker can optimize the final executable (/ink time optimization)

Given the static library my_lib , the corresponding file is:

Linux 1libmy_lib.a
Windows my_lib.1lib

35/48



Building Static Libraries

Steps to build a static library
= Compile object files for each translation unit (.cpp)
= Create the static library by using the archiver (ar) Linux utility

g++ sourcel.c -c sourcel.o
gt++ source2.c -c source2.o
ar rvs libmystaticlib.a sourcel.o source2.o

36/48



Using Static Libraries

A static library has to be linked to the final executable:
Linux g++ -llibrary main.cpp -o main

Windows msvc <path_to_library>/library.lib main.cpp /0OUT:main.exe

The directories where to search for static libraries at compile-time are specified with
environment variables:
Linux LIBRARY_PATH Search for .a files
Windows LIBPATH Search for .1lib files
It is also possible to specify additional library paths with compiler flags:

Linux g++ -L<library_path> main.cpp -o main

Windows msvc /LIBPATH<library_path> main.cpp /0UT:main.exe 37/48



Dynamic Library

A dynamic library, also called a shared library, consists of routines that are loaded

into the application at run-time. If a program is compiled with a dynamic library, the
library does not become part of final executable. It remains as a separate unit

+ A dynamic library can be modified without re-link: bug fixing, new functionalities

— Dynamic library functions are called outside the executable. Neither the linker nor
the compiler can optimize the code between shared libraries and the final
executable

= The environment variables must be set to the right shared library path, otherwise
the application crashes at the beginning

Given the shared library my_1ib , the corresponding file is:

Linux 1libmy_lib.so
Windows my_lib.dll + my_1lib.lib 38/48



Building Dynamic Libraries

Steps to build a dynamic library

= Compile object files for each translation unit (.cpp). Since library cannot store
code at fixed addresses, the compiler must generate position independent code
( -fPIC)

= Create the dynamic library

g++ sourcel.c -c sourcel.o -fPIC
gt++ source2.c -c source2.o -fPIC

g++ sourcel.o source2.o -shared -o libmydynamiclib.so

39/48



Using Dynamic Libraries 1/2

Dynamic libraries need to be available when the program executes (run-time). The
program searches for dynamic libraries in the same directory and the paths specified in

the following environment variables:

Linux Search for .so files

LD_LIBRARY_PATH environment variable

= /1ib64 and /usr/lib64
= RPATH and RUNPATH fields with custom values embedded in the executable
= /etc/ld.so.cache cache of library locations created by the ldconfig command.

Can be inspected by ldconfig -p

40/48



Using Dynamic Libraries

Windows Search for .d11 files

= PATH environment variable

Executable directory and current working directory

%SystemRoot’%\System32 , %SystemRoot), system directories

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Session Manager\KnownDLLs list of known DLLs

41/48



Application Binary Interface (ABI)

An Application Binary Interface (ABI) defines the low-level details of how programs
composed of separately compiled modules work together. An ABI specifies how
functions are called and how data is exchanged.

A stable ABI is essential to update the program’s shared libraries without recompiling
all the code

Some examples of ABI-breaking changes are changing the type or order of members
within a struct , modifying the return type or parameters of a function, or adding a
virtual function to a class that previously did not have one

An ABI can be also checked across different shared library/header versions with

specific tools, such as ABI Compliance Checker &

42/48


https://github.com/lvc/abi-compliance-checker

Demangling

Name mangling is a technique used to solve various problems caused by the need to

resolve unique names

Transforming C++ ABI (Application binary interface) identifiers into the original
source identifiers is called demangling

Example (linking error):

_ZNSt13basic_filebufIcStllichar_traitsIcEED1Ev

After demangling:

std::basic_filebuf<char, std::char_traits<char> >::~basic_filebuf ()

How to demangle: echo <name> | c++filt

Online Demangler: https://demangler.com 43/48


https://demangler.com

Find Dynamic Library Dependencies

The 1dd utility shows the shared objects (shared libraries) required by a program or
other shared objects

$ 1dd /bin/1s
linux-vdso.so.1 (0x00007£ffcc3563000)
libselinux.so.1 => /1ib64/libselinux.so.1 (0x00007£87e5459000)
libcap.so.2 => /1ib64/libcap.so.2 (0x00007£87e5254000)
libc.so.6 => /1ib64/libc.so.6 (0x00007£87e4e92000)
libpcre.so.1 => /1ib64/libpcre.so.1 (0x00007£87e4c22000)
libdl.so0.2 => /1ib64/1ibdl.so0.2 (0x00007£87e4ale000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00005574bf12e000)
libattr.so.1 => /1ib64/libattr.so.1 (0x00007£87e4817000)
libpthread.so.0 => /1ib64/libpthread.so.0 (0x00007£87e45£a000)

Alternatively, LD_DEBUG=1ibs can be used to print search and load paths of shared

libraries at runtime
44/48



Find Object/Executable Symbols *

The nm utility provides information on the symbols being used in an object file or

executable file

$ nm -D -C something.so
W __gmon_start__

D __libc_start_main

D free

D malloc

D printf

# —-C: Decode low-level symbol names

# -D: accepts a dynamic library

45/48



Find Object/Executable Symbols *

readelf displays information about ELF format object files

$ readelf -symbols something.so |c++filt
. OBJECT LOCAL DEFAULT 17 __frame_dummy_init_array_
. FILE  LOCAL DEFAULT ABS prog.cpp
. OBJECT LOCAL DEFAULT 14 CC1
. OBJECT LOCAL DEFAULT 14 CC2
. FUNC LOCAL DEFAULT 12 g()

# —-—-symbols: display symbol table

46/48



Find Object/Executable Symbols *

objdump displays information about object files

$ objdump -t -C something.so |c++filt

. df *ABSx* ... Dprog.cpp

0 .rodata ... CC1

0 .rodata ... CC2

F .text ... gO

0 .rodata ... (anonymous namespace)::CC3

0 .rodata ... (anonymous namespace)::CC4

F .text ... (anonymous namespace)::h()

F .text ... (anonymous namespace)::B::j1()
F .text ... (anonymous namespace)::B::j2()

# ——t: display symbols

# -C: Decode low-level symbol names

47/48



References and Additional Material

= 20 ABI (Application Binary Interface) breaking changes every C++

developer should know
= Policies/Binary Compatibility Issues With C++

= 10 differences between static and dynamic libraries every C++

developer should know

48/48


https://www.acodersjourney.com/20-abi-breaking-changes/
https://www.acodersjourney.com/20-abi-breaking-changes/
https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B
https://www.acodersjourney.com/cplusplus-static-vs-dynamic-libraries/
https://www.acodersjourney.com/cplusplus-static-vs-dynamic-libraries/

	#include Issues
	Include Guard
	Forward Declaration
	Circular Dependencies
	Common Linking Errors

	C++20 Modules
	Overview
	Terminology
	Visibility and Reachability
	Module Unit Types
	Keywords
	Global Module Fragment
	Private Module Fragment
	Header Module Unit
	Module Partitions

	Compiling Multiple Translation Units
	Fundamental Compiler Flags
	Compile Methods

	Libraries in C++
	Static Library
	Building Static Libraries
	Using Static Libraries
	Dynamic Library
	Building Dynamic Libraries
	Using Dynamic Libraries
	Application Binary Interface (ABI)
	Demangling
	Find Dynamic Library Dependencies
	Analyze Object/Executable Symbols


