
Modern C++
Programming
12. Templates and

Meta-programming II
Class Templates , Sfinae, and Concepts

Federico Busato
2026-01-06

Table of Contents

1 Class Template
Class Specialization

Class Template Constructor

2 Constructor Template Automatic Deduction (CTAD)

1/85

Table of Contents

3 Class Template - Advanced Concepts
Class + Function - Specialization

Dependent Names - typename and template Keywords

Class Template Hierarchy and using

friend Keyword

Template Template Arguments

4 Template Meta-Programming

2/85

Table of Contents

5 SFINAE: Substitution Failure Is Not An Error
Function SFINAE

Class SFINAE

6 Variadic Templates
Homogeneous Variadic Parameters

Folding Expression

Variadic Class Template ⋆

3/85

Table of Contents

7 C++20 Concepts
Overview

concept Keyword

requires Clause

requires Expression

requires Expression + Clause

requires Clause + Expression

requires and constexpr

Nested requires

8 Template Debugging
4/85

Class Template

Class Template

Similarly to function templates, class templates are used to build a family of classes

template<typename T>
struct A { // class template (typename template)

T x = 0;
};
template<int N1>
struct B { // class template (numeric template)

int N = N1;
};

A<int> a1; // a1.x is int x = 0
A<float> a2; // a2.x is float x = 0.0f
B<1> b1; // b1.N is 1
B<2> b2; // b2.N is 2

5/85

Class Template Specialization 1/2

The main difference with template functions is that classes can be partially specialized
Note: Every class specialization (both partial and full) is a completely new class, and it does
not share anything with the generic class

template<typename T, typename R>
struct A {}; // generic class template

template<typename T>
struct A<T, int> {}; // partial specialization

template<>
struct A<float, int> {}; // full specialization

6/85

Class Template Specialization 2/2

template<typename T, typename R>
struct A { // GENERIC class template

T x;
};

template<typename T>
struct A<T, int> { // PARTIAL specialization

T y;
};

A<float, float> a1;
a1.x; // ok, generic template
// a1.y; // compile error

A<float, int> a2;
a2.y; // ok, partial specialization
// a2.x; // compile error

7/85

Example 1: Implement a Simple Type Trait

template<typename T, typename R> // GENERIC template declaration
struct is_same {

static constexpr bool value = false;
};

template<typename T>
struct is_same<T, T> { // PARTIAL template specialization

static constexpr bool value = true;
};

cout << is_same< int, char>::value; // print false, generic template
cout << is_same<float, float>::value; // print true, partial template

8/85

Example 2: Check if a Pointer is const

include <type_traits>

// std::true_type and std::false_type contain a field "value"
// set to true or false respectively

template<typename T>
struct is_pointer_to_const : std::false_type {}; // GENERIC template declaration

template<typename R> // PARTIAL specialization
struct is_pointer_to_const<const R*> : std::true_type {};

cout << is_pointer_to_const<int*>::value; // print false, generic template
cout << is_pointer_to_const<const int*>::value; // print true, partial template
cout << is_pointer_to_const<int* const>::value; // print false, generic template

9/85

Example 3: Compare Class Templates

include <type_traits>

template<typename T>
struct A {};

template<typename T, typename R>
struct Compare : std::false_type {}; // GENERIC template declaration

template<typename T, typename R>
struct Compare<A<T>, A<R>> : std::true_type {}; // PARTIAL specialization

cout << Compare<int, float>::value; // false, generic template
cout << Compare<A<int>, A<int>>::value; // true, partial template
cout << Compare<A<int>, A<float>>::value; // true, partial template

10/85

Class Template Constructor

Class template arguments don’t need to be repeated if they are the default ones

template<typename T>
struct A {

A(const A& x); // A(const A<T>& x);

A f(); // A<T> f();
};

11/85

Constructor
Template Automatic
Deduction (CTAD)

Constructor Template Automatic Deduction (CTAD)

C++17 introduces automatic deduction of class template arguments in constructor
calls

template<typename T, typename R>
struct A {

A(T x, R y) {}
};

A<int, float> a1(3, 4.0f); // < C++17
A a2(3, 4.0f); // C++17

// A<int> a{3, 5}; compile error, "partial" specialization

12/85

CTAD - User-Defined Deduction Guides

Template deduction guide is a mechanism to instruct the compiler how to map
constructor parameter types into class template parameters

template<typename T>
struct MyString {

MyString(T) {}
};

// constructor class instantiation
MyString(char const*) -> MyString<std::string>; // deduction guide

MyString s{"abc"}; // construct 'MyString<std::string>'

13/85

CTAD - User-Defined Deduction Guides - Aggregate Example

template<typename T>
struct A {

T x, y;
};

template<typename T>
A(T, T) -> A<T>; // deduction guide

// not required in C++20+ for aggregates

A a{1, 3}; // construct 'A<int, int>'

14/85

CTAD - User-Defined Deduction Guides - Independent Argument Example

template<int I>
struct A {

template<typename T>
A(T) {}

};

template<typename T>
A(T) -> A<sizeof(T)>; // deduction guide

A a{1}; // construct 'A<4>', 4 == sizeof(int)

15/85

CTAD - User-Defined Deduction Guides - Universal Reference Example

include <type_traits> // std::remove_reference_t

template<typename T>
struct A {

template<typename R>
A(R&&) {}

};

template<typename R>
A(R&&) -> A<std::remove_reference_t<R>>; // deduction guide

int x;
A a{x}; // construct 'A<int>' instead of 'A<int&>'

16/85

CTAD - User-Defined Deduction Guides - Iterator Example

include <type_traits> // std::remove_reference_t
include <vector> // std::vector

template<typename T>
struct Container {

template<typename Iter>
Container(Iter beg, Iter end) {}

};

template<typename Iter>
Container(Iter b, Iter e) -> // deduction guide

Container<typename std::iterator_traits<Iter>::value_type>;

std::vector v{1, 2, 3};
Container c{v.begin(), v.end()}; // construct 'Container<int>'

17/85

CTAD - User-Defined Deduction Guides - Alias Template

Alias template deduction requires C++20

template<typename T>
struct A {

A(T) {}
};

template<typename T>
A(T) -> A<int>; // deduction guide

template<typename T>
using B = A<T>; // alias template

B c{3.0}; // alias template deduction
// construct 'A<int>'

18/85

CTAD User-Defined Deduction Guides - Limitation

Template deduction guide doesn’t work within the class scope

template<typename T>
struct MyString {

MyString(T) {}
auto f() { return MyString("abc"); } // create 'MyString<const char*>'

}; // NOT 'MyString<std::string>'
MyString(const char*) -> MyString<std::string>; // deduction guide

MyString<const char*> s{"abc"}; // construct 'MyString<const char*>'

The problem can be avoided by using fully-qualifying the class type

auto f() { return ::MyString("abc"); }

19/85

Class Template -
Advanced Concepts

Class + Function - Specialization 1/3

Given a class template and a template member function

template<typename T, typename R>
struct A {

template<typename X, typename Y>
void f();

};

There are two ways to specialize the class/function:

• Generic class + generic function

• Full class specialization + generic/full specialization function

20/85

Class + Function - Specialization 2/3

template<typename T, typename R>
template<typename X, typename Y>
void A<T, R>::f() {}
// ok, A<T, R> and f<X, Y> are not specialized

template<>
template<typename X, typename Y>
void A<int, int>::f() {}
// ok, A<int, int> is full specialized
// ok, f<X, Y> is not specialized

template<>
template<>
void A<int, int>::f<int, int>() {}
// ok, A<int, int> and f<int, int> are full specialized

21/85

Class + Function - Specialization 3/3

template<typename T>
template<typename X, typename Y>
void A<T, int>::f() {}
// error A<T, int> is partially specialized
// (A<T, int> class must be defined before)

template<typename T, typename R>
template<typename X>
void A<T, R>::f<int, X>() {}
// error function members cannot be partially specialized

template<typename T, typename R>
template<>
void A<T, R>::f<int, int>() {}
// error function members of a non-specialized class cannot be specialized
// (requires a binding to a specific template instantiation at compile-time)

22/85

Accessing a Dependent Type - typename Keyword 1/2

Structure templates can have different data members for each specialization.
The compiler needs to know in advance if a symbol within a structure is a type or a
static member when the structure template depends on another template parameter

The keyword typename placed before a structure template solves this ambiguous

template<typename T>
struct A {

using type = int;
};

template<typename R>
void g() {

using X = typename A<R>::type; // "type" is a typename or
} // a data member depending on R

23/85

Accessing a Dependent Type - typename Keyword 2/2

The using keyword can be used to simply the expression to get the structure type

template<typename T>
struct A {

using type = int;
};

template<typename T>
using AType = typename A<T>::type;

template<typename R>
void g() {

using X = AType<R>;
}

24/85

Template Dependent Names - template Keyword

The template keyword tells the compiler that what follows is a template name
(function or class)
note: recent compilers don’t strictly require this keyword in simple cases

template<typename T>
struct A {

template<typename R>
void g() {}

};

template<typename T> // A<T> is a dependent name (from T)
void f(A<T> a) {
// a.g<int>(); // compile error A<T> is dependent on T

// interpreted as: "a.g < int > ();"
// namely: "(a.g < int) > ();"

a.template g<int>(); // ok
}

25/85

Class Template Hierarchy and using

Member of class templates can be used internally in derived class templates by
specifying the particular type of the base class with the keyword using

template<typename T>
struct A {

T x;
void f() {}

};

template<typename T>
struct B : A<T> {

using A<T>::x; // needed (otherwise it could be another specialization)
using A<T>::f; // needed

void g() {
x; // without 'using': this->x
f();

}
}; 26/85

virtual Function and Template

Virtual functions cannot have template arguments

• Templates are a compile-time feature
• Virtual functions are a run-time feature

Full story:
The reason for the language disallowing the particular construct is that there are
potentially infinite different types that could be instantiating your template member
function, and that in turn means that the compiler would have to generate code to
dynamically dispatch those many types, which is infeasible
stackoverflow.com/a/79682130

27/85

stackoverflow.com/a/7968213

friend Keyword

template<typename T> struct A {};
template<typename T, typename R> struct B {};
template<typename T> void f() {}
//--
class C {

friend void f<int>(); // match only f<int>

template<typename T> friend void f(); // match all templates

friend struct A<int>; // match only A<int>

template<typename> friend struct A; // match all A templates

// template<typename T> friend struct B<int, T>;
// partial specialization cannot be declared as a friend
};

28/85

Template Template Arguments

Template template parameters match templates instead of concrete types

template<typename T> struct A {};

template< template<typename> class R >
struct B {

R<int> x;
R<float> y;

};
template< template<typename> class R, typename S >
void f(R<S> x) {} // works with every class with exactly one template parameter

B<A> y;
f(A<int>());

class and typename keyword are interchangeably in C++17
29/85

Template
Meta-Programming

Template Meta-Programming

“Metaprogramming is the writing of computer programs with the
ability to treat programs as their data. It means that a program could
be designed to read, generate, analyze or transform other programs, and
even modify itself while running”

“Template meta-programming refers to uses of the C++ template
system to perform computation at compile-time within the code.
Templates meta-programming include compile-time constants, data
structures, and complete functions”

30/85

Template Meta-Programming

• Template Meta-Programming is fast (runtime)
Template Metaprogramming is computed at compile-time (nothing is computed at
run-time)

• Template Meta-Programming is Turing Complete
Template Metaprogramming is capable of expressing all tasks that standard
programming language can accomplish

• Template Meta-Programming requires longer compile time
Template recursion heavily slows down the compile time, and requires much more
memory than compiling standard code

• Template Meta-Programming is complex
Everything is expressed recursively. Hard to read, hard to write, and also very hard
to debug 31/85

Example 1: Factorial

template<int N>
struct Factorial { // GENERIC template: Recursive step

static constexpr int value = N * Factorial<N - 1>::value;
};

template<>
struct Factorial<0> { // FULL SPECIALIZATION: Base case

static constexpr int value = 1;
};

constexpr int x = Factorial<5>::value; // 120
// int y = Factorial<-1>::value; // Infinite recursion :)

32/85

Example 1: Factorial (Notes)

The previous example can be easily written as a constexpr in C++14

template<typename T>
constexpr int factorial(T value) {

T tmp = 1;
for (int i = 2; i <= value; i++)

tmp *= i;
return tmp;

};

Advantages:
• Easy to read and write (easy to debug)
• Faster compile time (no recursion)
• Works with different types (typename T)
• Works at run-time and compile-time

33/85

Example 2: Log2

template<int N>
struct Log2 { // GENERIC template: Recursive step

static_assert(N > 0, "N must be greater than zero");

static constexpr int value = 1 + Log2<N / 2>::value;
};

template<>
struct Log2<1> { // FULL SPECIALIZATION: Base case

static constexpr int value = 0;
};

constexpr int x = Log2<20>::value; // 4

34/85

Example 3: Log

template<int A, int B>
struct Max { // utility

static constexpr int value = A > B ? A : B;
};

template<int N, int BASE>
struct Log { // GENERIC template: Recursive step

static_assert(N > 0, "N must be greater than zero");
static_assert(BASE > 0, "BASE must be greater than zero");

// Max is used to avoid Log<0, BASE>
static constexpr int TMP = Max<1, N / BASE>::value;
static constexpr int value = 1 + Log<TMP, BASE>::value;

};
template<int BASE>
struct Log<1, BASE> { // PARTIAL SPECIALIZATION: Base case

static constexpr int value = 0;
};

constexpr int x = Log<20, 2>::value; // 4

35/85

Example 4: Unroll (Compile-time/Run-time Mix) ⋆

template<int NUM_UNROLL, int STEP = 0>
struct Unroll { // GENERIC template: Recursive step

template<typename Op>
static void run(Op op) {

op(STEP);
Unroll<NUM_UNROLL, STEP + 1>::run(op);

}
};

template<int NUM_UNROLL>
struct Unroll<NUM_UNROLL, NUM_UNROLL> { // PARTIAL SPECIALIZATION: Base case

template<typename Op>
static void run(Op) {}

};

auto lambda = [](int step) { cout << step << ", "; };
Unroll<5>::run(lambda); // print "0, 1, 2, 3, 4"

36/85

SFINAE:
Substitution Failure
Is Not An Error

SFINAE

SFINAE
Substitution Failure Is Not An Error (SFINAE) applies during overload resolution
of function templates. When substituting the deduced type for the template
parameter fails, the specialization is discarded from the overload set instead of
causing a compile error

37/85

The Problem

template<typename T>
T ceil_div(T value, T div);

template<>
unsigned ceil_div<unsigned>(unsigned value, unsigned div) {

return (value + div - 1) / div;
}

template<>
int ceil_div<int>(int value, int div) { // handle negative values

return (value > 0) ∧ (div > 0) ?
(value / div) : (value + div - 1) / div;

}

What about long long int , long long unsigned , short , unsigned short ,
etc.?

38/85

std::enable_if Type Trait

The common way to adopt SFINAE is using the
std::enable_if/std::enable_if_t type traits

std::enable_if allows a function template or a class template specialization to
include or exclude itself from a set of matching functions/classes

template<bool Condition, typename T = void>
struct enable_if {
// "type" is not defined if "Condition == false"
};
template<typename T>
struct enable_if<true, T> {

using type = T;
};

helper alias: std::enable_if_t<T> instead of typename std::enable_if<T>::type
39/85

Function SFINAE - Return type 1/5

include <type_traits> // std::is_signed_v, std::enable_if_t

template<typename T>
std::enable_if_t<std::is_signed_v<T>>
f(T) {

cout << "signed";
}

template<typename T>
std::enable_if_t<!std::is_signed_v<T>>
f(T) {

cout << "unsigned";
}

f(1); // print "signed"
f(1u); // print "unsigned"

40/85

Function SFINAE - Parameter 2/5

include <type_traits> compiler-explorer �

template<typename T>
void f(std::enable_if_t<std::is_signed_v<T>, T>) {

cout << "signed";
}

template<typename T>
void f(std::enable_if_t<!std::is_signed_v<T>, T>) {

cout << "unsigned";
}

// NOTE: explicit SFINAE on parameter prevents argument deduction
f<int>(1); // print "signed"
f<unsigned>(1u); // print "unsigned"
// f(1); // compile error
// f(1u); // compile error

41/85

https://godbolt.org/z/WqrWcr1ja

Function SFINAE - Hidden Parameter 3/5

include <type_traits>

template<typename T>
void f(T,

std::enable_if_t<std::is_signed_v<T>, int> = 0) {
cout << "signed";

}

template<typename T>
void f(T,

std::enable_if_t<!std::is_signed_v<T>, int> = 0) {
cout << "unsigned";

}

f(1); // print "signed"
f(1u); // print "unsigned"

42/85

Function SFINAE - Hidden Template Parameter 4/5

include <type_traits>

template<typename T,
std::enable_if_t<std::is_signed_v<T>, int> = 0>

void f(T) {}

template<typename T,
std::enable_if_t<!std::is_signed_v<T>, int> = 0>

void f(T) {}

f(4);
f(4u);

43/85

Function SFINAE - decltype + return type 5/5

include <type_traits>
template<typename T, typename R> // (1)
decltype(T{} + R{}) add(T a, R b) { // T{} + R{} is not possible with 'A'

return a + b;
}

template<typename T, typename R> // (2)
std::enable_if_t<std::is_class_v<T>, T> // 'int' is not a class
add(T a, R b) {

return a;
}

struct A {};

add(1, 2u); // call (1)
add(A{}, A{}); // call (2)
// if 'A' supports operator+, then we have a conflict

44/85

Function SFINAE Example - Array vs. Pointer

include <type_traits> compiler-explorer �

template<typename T, int Size>
void f(T (&array)[Size]) {} // (1)

// template<typename T>
// void f(T array) {} // (2)

template<typename T>
std::enable_if_t<std::is_pointer_v<T>>
f(T ptr) {} // (3)

// void f(int* pointer) {} // (4) has the highest priority among (1), (2), and (3)

int array[3];
f(array); // It is not possible to call (1) if (2) is present

// The reason is that 'array' decays to a pointer
// Now with (3), the code calls (1) 45/85

https://godbolt.org/z/v78PvxzPf

Function SFINAE Notes

The wrong way to achieve SFINAE

template<typename T, typename = std::enable_if_t<std::is_signed_v<T>>>
void f(T) {}

// template<typename T, typename = std::enable_if_t<!std::is_signed_v<T>>>
// void f(T) {}
// compile error redefinition of the second template parameter

Using std::enable_if_t for the return type prevents auto deduction

// template<typename T>
// std::enable_if_t<std::is_signed_v<T>, auto> f(T) {}
// compile error auto is not allowed here

46/85

Class SFINAE

include <type_traits>

template<typename T, typename Enable = void>
struct A;

template<typename T>
struct A<T, std::enable_if_t<std::is_signed_v<T>>> {
};

template<typename T>
struct A<T, std::enable_if_t<!std::is_signed_v<T>>> {
};

A<int> a1;
A<unsigned> a2;

47/85

Check Struct Member ⋆ 1/3

SFINAE can be also used to check if a structure has a specific data member or type

Let consider the following structures:

struct A {
static int x;
int y;
using type = int;

};

struct B {};

48/85

Check Struct Member - Variable ⋆ 2/3

include <type_traits>
template<typename T, typename = void>
struct has_x : std::false_type {};

template<typename T>
struct has_x<T, decltype((void) T::x)> : std::true_type {};

template<typename T, typename = void>
struct has_y : std::false_type {};

template<typename T>
struct has_y<T, decltype((void) std::declval<T>().y)> : std::true_type {};

has_x< A >::value; // returns true
has_x< B >::value; // returns false
has_y< A >::value; // returns true
has_y< B >::value; // returns false

49/85

Check Struct Member - Type ⋆ 3/3

template<typename...>
using void_t = void; // included in C++17 <utility>

template<typename T, typename = void>
struct has_type : std::false_type {};

template<typename T>
struct has_type<T,

std::void_t<typename T::type> > : std::true_type {};

has_type< A >::value; // returns true
has_type< B >::value; // returns false

50/85

Support Trait for Stream Operator ⋆

template<typename T>
using EnableP = decltype(std::declval<std::ostream&>() <<

std::declval<T>());

template<typename T, typename = void>
struct is_stream_supported : std::false_type {};

template<typename T>
struct is_stream_supported<T, EnableP<T>> : std::true_type {};

struct A {};

is_stream_supported<int>::value; // returns true
is_stream_supported<A>::value; // returns false

51/85

SFINAE

https://twitter.com/IAmErikN/status/1252316405724336128 52/85

https://twitter.com/IAmErikN/status/1252316405724336128

Variadic Templates

Variadic Template 1/2

Variadic template (C++11)
A variadic template captures a parameter pack of arguments, which hold an
arbitrary number of values or types

template<typename... TArgs> // Variadic typename -> parameter pack: ... TArgs
void f(TArgs... args) {} // pack expansion -> pattern: TArgs

A parameter pack is introduced by an identifier TArgs prefixed by an ellipsis
... TArgs . Once captured, a parameter pack can later be used in a pattern
expanded by an ellipsis ...

A pack expansion is equivalent to a comma-separated list of instances of the pattern

A pattern is a set of tokens containing the identifiers of one or more parameter packs.
When a pattern contains more than one parameter pack, all packs must have the same length 53/85

Variadic Template 2/2

template<typename... TArgs>
void f(TArgs... args) { // Typename expansion

int values[] = {args...}; // Arguments expansion
}
f(1, 2, 3);

The pack TArgs expands in a template-argument-list, i.e. list of template arguments
The pack args expands in an initializer-list, i.e. list of values

The number of variadic arguments can be retrieved with the sizeof... operator

sizeof...(args) // e.g. 3

Note: variadic arguments must be the last one in the declaration

C++20 idioms for parameter packs 54/85

https://www.scs.stanford.edu/~dm/blog/param-pack.html

Example 1

// BASE CASE
template<typename T, typename R>
auto add(T a, R b) {

return a + b;
}

// RECURSIVE CASE
template<typename T, typename... TArgs> // Variadic typename
auto add(T a, TArgs... args) { // Typename expansion

return a + add(args...); // Arguments expansion
}

add(2, 3.0); // 5
add(2, 3.0, 4); // 9
add(2, 3.0, 4, 5); // 14
// add(2); // compile error the base case accepts only two arguments

55/85

Example 2 - Function Unpack

template<typename T, typename... TArgs>
auto add(T a, TArgs... args); // see previous slides

struct A {
int v;
int f() { return v; }

};

template<typename... TArgs>
int f(TArgs... args) {

return add(args.f()...); // equivalent to: 'A{1}.f(), A{2}.f(), A{3}.f()'
}

f(A{1}, A{2}, A{3}); // return 6

56/85

Example 3 - Function Application

template<typename T, typename... TArgs>
auto add(T a, TArgs... args); // see previous slides

template<typename T>
T square(T value) { return value * value; }

//---

template<typename... TArgs>
auto add_square(TArgs... args) {

return add(square(args)...); // square() is applied to each
} // variadic argument

add_square(2, 2, 3.0f); // returns 17.0f

57/85

Example 4 - Type Expansion

template<typename... TArgs>
int g(TArgs... args) {}

template<typename... TArgs>
int f(TArgs... args) {

g<std::make_unsigned_t<TArgs>...>(args...);
}

f(1, 2, 3);

58/85

Function Initializer List Types

template<typename... TArgs>
void f(TArgs... args) {} // pass by-value

template<typename... TArgs>
void g(const TArgs&... args) {} // pass by-const reference

template<typename... TArgs>
void h(TArgs*... args) {} // pass by-pointer

template<int... Sizes>
void l(int (&...arrays)[Sizes]) {} // pass a list of array references

int a[] = {1, 2};
int b[] = {1, 2, 3};
f(1, 2.0);
h(a, b);
l(a, b); // same as g()

59/85

Homogeneous Variadic Template Parameters

Parameter pack can be also used to create a homogeneous variadic template
parameters

template<int... IntSeq> // sequence of integers
void f() {}

f<1, 2, 3>();

template<int... IntSeq> // sequence of integers
class A {};

A<1, 2, 3> a{};

60/85

Other Usages

Variadic templates can be also applied to lambdas with generic parameters (C++14)
and concepts (C++20)

auto lambda = [](auto... args) {};

lambda(1, 2u, 3.0f, 1ull);

void f(std::floating_point auto... args) {}

f(1.0, 2.0f); // ok
// f(1u, 2.0f); // compile error

61/85

Advanced Usages ⋆

Besides initializer-lists, template-argument-list, parameter pack can be used in:
capture list, constructor initializer-list, using declaration

template<typename... BaseClasses>
struct A : BaseClasses... { // : BaseClass_1, BaseClass_2, ...

A(int v) : BaseClasses...{v} {} // BaseClass_1{v}, BaseClass_2{v}, ...

using BaseClasses::f;
// equivalent to:
// using BaseClass_1::f;
// using BaseClass_2::f;
// ...
};

void f(auto... args) {
auto lambda = [arg&...](){}; // capture by-reference

}
62/85

Folding Expression 1/2

C++17 Folding expressions perform a fold of a template parameter pack over any
binary operator in C++ (+ , * , , , += , && , <= etc.)

Unary/Binary folding
template<typename... Args>
auto add_unary(Args... args) { // Unary folding

return (... + args); // unfold: 1 + 2.0f + 3ull
}

template<typename... Args>
auto add_binary(Args... args) { // Binary folding

return (1 + ... + args); // unfold: 1 + 1 + 2.0f + 3ull
} // the value on the left of the ellipsis is typically the identity

add_unary(1, 2.0f, 3ll); // returns 6.0f (float)
add_binary(1, 2.0f, 3ll); // returns 7.0f (float) 63/85

Example 1 - Extract The Last Argument

template<typename... TArgs>
int f(TArgs... args) {

return (args, ...); // the comma operator discards left values
} // same as (..., args)

f(1, 2, 3); // return 3

64/85

Example 2 - Function Application

Same example of “Variadic Template - Function Application” ... but shorter

template<typename T>
T square(T value) { return value * value; }

template<typename... TArgs>
auto add_square(TArgs... args) {

return (square(args) + ...); // square() is applied to each
} // variadic argument

add_square(2, 2, 3.0f); // returns 17.0f

Note: binary unfolding (1 + ... + args) cannot be combined with functions

65/85

Example 3 - Homogeneous Variadic Parameter Type

Parameter pack can be constrained to obtain a homogeneous variadic parameter
type

template <typename ... TArgs>
std::enable_if_t<(std::is_same_v<TArgs, int> && ... && true)>
f(const TArgs ... args) {}

f(1, 2, 3); // ok
// f(1u, 2, 3); // compile error

66/85

Variadic Template and Classes

template<int... NArgs>
struct Add; // data structure declaration

template<int N1, int N2>
struct Add<N1, N2> { // BASE case

static constexpr int value = N1 + N2;
};

template<int N1, int... NArgs>
struct Add<N1, NArgs...> { // RECURSIVE case

static constexpr int value = N1 + Add<NArgs...>::value;
};

Add<2, 3, 4>::value; // returns 9
// Add<>; // compile error no match
// Add<2>::value; // compile error

// call Add<N1, NArgs...>, then Add<>
67/85

Variadic Class Template ⋆

Variadic Template can be used to build recursive data structures
template<typename... TArgs>
struct Tuple; // data structure declaration

template<typename T>
struct Tuple<T> { // base case

T value; // specialization with one parameter
};

template<typename T, typename... TArgs>
struct Tuple<T, TArgs...> { // recursive case

T value; // specialization with more
Tuple<TArgs...> tail; // than one parameter

};

Tuple<int, float, char> t1 { 2, 2.0, 'a' };
t1.value; // 2
t1.tail.value; // 2.0
t1.tail.tail.value; // 'a' 68/85

Variadic Template and Class Specialization ⋆ 1/3

Get function arity at compile-time:
template <typename T>
struct GetArity;

// generic function pointer
template<typename R, typename... Args>
struct GetArity<R(*)(Args...)> {

static constexpr int value = sizeof...(Args);
};
// generic function reference
template<typename R, typename... Args>
struct GetArity<R(&)(Args...)> {

static constexpr int value = sizeof...(Args);
};
// generic function object
template<typename R, typename... Args>
struct GetArity<R(Args...)> {

static constexpr int value = sizeof...(Args);
}; 69/85

Variadic Template and Class Specialization ⋆ 2/3

void f(int, char, double) {}

int main() {
// function object
GetArity<decltype(f)>::value;

auto& g = f;
// function reference
GetArity<decltype(g)>::value;

// function reference
GetArity<decltype((f))>::value;

auto* h = f;
// function pointer
GetArity<decltype(h)>::value;

}

Get function arity from template parameter
70/85

https://stackoverflow.com/questions/27866909

Variadic Template and Class Specialization ⋆ 3/3

Get operator() (and lambda) arity at compile-time:
template <typename T>
struct GetArity;

template<typename R, typename C, typename... Args>
struct GetArity<R(C::*)(Args...)> { // class member

static constexpr int value = sizeof...(Args);
};
template<typename R, typename C, typename... Args>
struct GetArity<R(C::*)(Args...) const> { // "const" class member

static constexpr int value = sizeof...(Args);
};

struct A {
void operator()(char, char) {}
void operator()(char, char) const {}

};

GetArity<A>::value; // call GetArity<R(C::*)(Args...)>
GetArity<const A>::value; // call GetArity<R(C::*)(Args...) const>

71/85

C++20 Concepts

C++20 Concepts Overview 1/2

C++20 introduces concepts as an extension for templates to enforce constraints,
which specifies the requirements on template arguments

Concepts allows performing compile-time validation of template arguments

Advantages compared to SFINAE (std::enable_if_t):
• Better express the intention
• Concepts are easier to read and write
• Clear compile-time messages for debugging
• Faster compile time

• The concept behind C++ concepts

• Concepts vs type traits

• Constraints and concepts

• What are C++20 concepts and constraints? How to use them? 72/85

https://www.sandordargo.com/blog/2021/02/10/cpp-concepts-motivations
https://akrzemi1.wordpress.com/2025/05/24/concepts-vs-type-traits/
https://en.cppreference.com/w/cpp/language/constraints
https://iamsorush.com/posts/concepts-cpp/

C++20 Concepts Overview 2/2

Keyword introduced:

concept Constrain
requires Constrain list/Requirements, clause and expression

73/85

The Problem

Goal : define a function to sum only arithmetic types

template<typename T>
T add(T valueA, T valueB) {

return valueA + valueB;
}
struct A {};

add(3, 4); // ok
// add(A{}, A{}); // not supported

SFINAE solution (ugly, verbose):
template<typename T>
std::enable_if_t<std::is_arithmetic_v<T>, T>
add(T valueA, T valueB) {

return valueA + valueB;
} 74/85

concept Keyword

[template arguments]
concept [name] = [compile-time boolean expression];

Example: arithmetic type concept

template<typename T>
concept Arithmetic = std::is_arithmetic_v<T>;

• Template argument constrain
template<Arithmetic T>
T add(T valueA, T valueB) {

return valueA + valueB;
}

• auto deduction constrain (constrained auto)
auto add(Arithmetic auto valueA, Arithmetic auto valueB) {

return valueA + valueB;
} 75/85

requires Clause

requires [compile-time boolean expression or Concept]

it acts like SFINAE

• After template parameter list
template<typename T>
requires Arithmetic<T>
T add(T valueA, T valueB) {

return valueA + valueB;
}

• After function declaration
template<typename T>
T add(T valueA, T valueB) requires (sizeof(T) == 4) {

return valueA + valueB;
}

76/85

requires Clause and concept Notes

Concepts and requirements can have multiple statements. It must be a primary
expression, e.g. constexpr value (not a constexpr function) or a sequence of
primary expressions joined with the operator && or ||

template<typename T>
concept Arithmetic2 = std::is_arithmetic_v<T> && sizeof(T) >= 4;

Concepts and requirements can be used together

template<Arithmetic T>
requires (sizeof(T) >= 4)
T add(T valueA, T valueB) {

77/85

requires Expression 1/2

A requires expression is a compile-time expression of type bool that defines the
constraints on template arguments

requires [(arguments)] {
[SFINAE contrain]; // or
requires [predicate];

} -> bool

template<typename T>
concept MyConcept = requires (T a, T b) { // First case: SFINAE constrains

a + b; // Req. 1 - support add operator
a[0]; // Req. 2 - support subscript operator
a.x; // Req. 3 - has "x" data member
a.f(); // Req. 4 - has "f" function member
typename T::type; // Req. 5 - has "type" field

};
78/85

requires Expression 2/2

Concept library

include <concepts>

template<typename T>
concept MyConcept2 = requires (T a, T b) {

{*a + 1} -> std::convertible_to<float>; // Req. 6 - can be deferred and the sum
// with an integer is convertible
// to float

{a * a} -> std::same_as<int>; // Req. 7 - "a * a" must be valid and
// the result type is "int"

};

79/85

requires Expression + Clause

requires expression can be combined with requires clause
(see requires definition, second case) to compute a boolean value starting from
SFINAE expressions

template<typename T>
concept Arithmetic = requires { // expression -> bool (zero args)

T::value; // clause -> direct SFINAE
requires std::is_arithmetic_v<T>; // clause -> SFINAE from boolean

};template<typename T>
concept MyConcept = requires (T value) { // expression -> bool (one arg)

requires sizeof(value) >= 4; // clause -> SFINAE from boolean
requires std::is_floating_point_v<T>; // clause -> SFINAE from boolean

};

80/85

requires Clause + Expression

requires clause can be combined with requires expression to apply SFINAE
(functions, structures) starting from a compile-time boolean expressions

template<typename T>
void f(T a) requires requires { T::value; }
// clause -> SFINAE followed by
// expression -> bool (zero args)
{}template<typename T>
T increment(T a) requires requires (T x) { x + 1; }
// clause -> SFINAE followed by
// expression -> bool (one arg)
{

return a + 1;
}

81/85

requires and constexpr

Some examples:

• constexpr bool has_member_x = requires(T v){ v.x; };

• if constexpr (MyConcept<T>)

• static_assert(requires(T v){ ++v; }, "no increment");

• template<typename Iter>
constexpr bool is_iterator() {

return requires(Iter it) { *it++; };
}

82/85

Nested requires

Nested requires example:

requires(Iter v) { // expression -> bool (one arg)
Iter it;
requires requires(typename Iter::value_type v) {

// clause -> SFINAE followed by
// expression -> bool (one arg)

v = *it; // read
*it = v; // write

};
}

Requires-expression
83/85

https://akrzemi1.wordpress.com/2020/01/29/requires-expression/

Template Debugging

Template Debugging

• -ftemplate-backtrace-limit=<N> Maximum number of template
instantiation notes for a single warning/error to N , default 10
N=1 is useful when looking only at the lasted instantiation (much less verbose
output). N=100 (or higher) if you are looking at all template instantiations (rare)

• -ftemplate-depth=<N> Set the maximum instantiation depth for template
classes to N , default 900

• -Wfatal-errors Abort compilation on the first error occurred rather than
trying to keep going and printing further error messages

84/85

Template Debugging

• -fdiagnostics-show-template-tree Display the templates as an indented
text tree

map<
[...],
map<

[float != double],
[...]>>

85/85

	Class Template
	Class Specialization
	Class Template Constructor

	Constructor Template Automatic Deduction (CTAD)
	Class Template - Advanced Concepts
	Class + Function - Specialization
	Dependent Names - typename and template Keywords
	Class Template Hierarchy and using
	friend Keyword
	Template Template Arguments

	Template Meta-Programming
	SFINAE: Substitution Failure Is Not An Error
	Function SFINAE
	Class SFINAE

	Variadic Templates
	Homogeneous Variadic Parameters
	Folding Expression
	Variadic Class Template

	C++20 Concepts
	Overview
	concept Keyword
	requires Clause
	requires Expression
	requires Expression + Clause
	requires Clause + Expression
	requires and constexpr
	Nested requires

	Template Debugging

