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Polymorphism

Polymorphism
Polymorphism (meaning “having multiple forms”) is the capability of an entity of
mutating its behavior in accordance with the specific usage context

Polymorphism dispatch can be implemented at

• Compile-time (static polymorphism): when the called instance is known
before the program start

• Run-time (dynamic polymorphism): when the called instance is known only
during the execution, i.e. depends on run-time values

In C++, the term polymorphic is strongly associated with dynamic polymorphism
(overriding)
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Function Binding

Connecting the function call to the function body is called Binding
• In Early Binding or Static Binding or Compile-time Binding, the compiler identifies

the type of object at compile-time
- the program can jump directly to the function address

• In Late Binding or Dynamic Binding or Run-time binding, the run-time identifies
the type of object at execution-time and then matches the function call with the
correct function definition

- the program has to read the address held in the pointer and then jump to that
address (less efficient since it involves an extra level of indirection)

C++ achieves late binding by declaring a virtual function
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Polymorphism Forms

• Ad-hoc polymorphism: when it involves to a set of individually specified types,
e.g. function overloading
void f(int);
void f(double);

• Parametric polymorphism: when it involves generic types, e.g. templates
template<typename T>
void f(T);

• Subtyping : when it operates on elements of subtypes, e.g. virtual functions
// B : A
void f(A*); // also works for B if the called function are virtual
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C++ Mechanisms for Polymorphism 1/2

• Preprocessing
# define ADD(x, y) x + y // ADD(3, 4) or ADD(3.0, 4.0)

• Function/Operator overloading
void f(int);
void f(double);

• Templates
template<typename T>
void f(T); // f(3) or f(3.0)

• Virtual functions (see next slides)
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C++ Mechanisms for Polymorphism 2/2

Mechanism Implementation Form

Preprocessing static Parametric

Function/Operator overloading static Ad-hoc

Template static Parametric

Virtual function dynamic Subtyping
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Dynamic Polymorphism in C++

• At run-time, objects of a base class behave as objects of a derived class

• A Base class may define and implement polymorphic methods, and derived
classes can override them, which means they provide their own implementations,
invoked at run-time depending on the context

struct A {
void f() { cout << "A"; }

};
struct B : A {

void f() { cout << "B"; }
};
void g(A& a) { a.f(); } // accepts A and B

// note: g(B&) would only accept B
A a; B b;
g(a); // print "A"
g(b); // print "A" not "B"!!! 9/66



Polymorphism - virtual method

struct A {
virtual void f() { cout << "A"; }

}; // now "f()" is virtual, evaluated at run-time

struct B : A {
void f() override { cout << "B"; }
// now B::f() overrides A::f(), run-time dispatch
// 'virtual void f()' is also valid

}; // 'override' is a c++11 feature, more details in the next slides

void g(A& a) { a.f(); } // accepts A and B

A a;
B b;
g(a); // print "A"
g(b); // NOW, print "B"!!!
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When virtual works

struct A {
virtual void f() { cout << "A"; }

};

struct B : A {
void f() override { cout << "B"; }

};

void f(A& a) { a.f(); } // ok, print "B"
void g(A* a) { a->f(); } // ok, print "B"
void h(A a) { a.f(); } // does not work with pass-by value!! print "A"

B b;
f(b); // print "B"
g(&b); // print "B"
h(b); // print "A" (cast to A)
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Polymorphism Dynamic Behavior

struct A {
virtual void f() { cout << "A"; }

};

struct B : A {
void f() override { cout << "B"; }

};

A* get_object(bool selectA) {
return (selectA) ? new A() : new B();

}

get_object(true)->f(); // print "A"
get_object(false)->f(); // print "B"
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Virtual Table 1/2

vtable
The virtual table (vtable) is a lookup table of functions used to resolve function
calls and support dynamic dispatch (late binding)

A virtual table contains one entry for each virtual function that can be called by
objects of the class. Each entry in this table is simply a function pointer that points to
the most-derived function accessible by that class

The compiler adds a hidden pointer to the base class which points to the virtual table
for that class ( sizeof considers the vtable pointer)
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Virtual Table 2/2

struct A {
virtual void f();
virtual void g();

};

struct B : A {
void f() override;

};
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Does the vtable really exist? (answer: YES)

struct A {
int x = 3;
virtual void f() { cout << "abc"; }

};

A* a1 = new A;
A* a2 = (A*) malloc(sizeof(A));

cout << a1->x; // print "3"
cout << a2->x; // undefined value!!
a1->f(); // print "abc"
a2->f(); // segmentation fault A

Lesson learned: Never use malloc in C++
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Virtual Method Notes

virtual classes allocate one extra pointer (hidden)

struct A {
virtual void f1();
virtual void f2();

};

class B : A {};

cout << sizeof(A); // 8 bytes (vtable pointer)
cout << sizeof(B); // 8 bytes (vtable pointer)
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override Keyword 1/2

override Keyword (C++11)
The override keyword ensures that the function is virtual and is overriding a
virtual function from a base class

• It forces the compiler to check the base class to see if there is a virtual
function with this exact signature

• override clearly expresses the intent of the function, making the code easier to
understand

override implies virtual ( virtual should be omitted)
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override Keyword 2/2

struct A {
virtual void f(int a); // a "float" value is casted to "int"

}; // ∗ ∗ ∗

struct B : A {
void f(int a) override; // ok
void f(float a); // (still) very dangerous!!

// ∗ ∗ ∗

// void f(float a) override; // compile error not safe
// void f(int a) const override; // compile error not safe
};

// ∗ ∗ ∗ f(3.3f) has a different behavior between A and B
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final Keyword

final Keyword (C++11)
The final keyword prevents inheriting from classes or overriding methods in
derived classes

struct A {
virtual void f(int a) final; // "final" method

};

struct B : A {
// void f(int a); // compile error f(int) is "final"

void f(float a); // dangerous (still possible)
}; // "override" prevents these errors

struct C final { // cannot be extended
};
// struct D : C { // compile error C is "final"
// };
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Virtual Methods (Common Error 1)

All classes with at least one virtual method should declare a virtual
destructor
struct A {

∼A() { cout << "A"; } // <-- here the problem (not virtual)
virtual void f(int a) {}

};
struct B : A {

int* array;
B() { array = new int[1000000]; }
∼B() { delete[] array; }

};
//----------------------------------------------------------------------
void destroy(A* a) {

delete a; // call ∼A()
}
B* b = new B;
destroy(b); // without virtual, ∼B() is not called

// destroy() prints only "A" -> huge memory leak!! 20/66



Virtual Methods (Common Error 2)

Do not call virtual methods in constructor and destructor
• Constructor : The derived class is not ready until constructor is completed
• Destructor : The derived class is already destroyed

struct A {
A() { f(); } // what instance is called? "B" is not ready

// it calls A::f(), even though A::f() is virtual
virtual void f() { cout << "Explosion"; }

};
struct B : A {

B() = default; // call A(). Note: A() may be also implicit

void f() override { cout << "Safe"; }
};

B b; // call B(), print "Explosion", not "Safe"!! 21/66



Virtual Methods (Common Error 3)

Do not use default parameters in virtual methods
Default parameters are not inherited
struct A {

virtual void f(int i = 5) { cout << "A::" << i << "\n"; }
virtual void g(int i = 5) { cout << "A::" << i << "\n"; }

};
struct B : A {

void f(int i = 3) override { cout << "B::" << i << "\n"; }
void g(int i) override { cout << "B::" << i << "\n"; }

};
A a; B b;
a.f(); // ok, print "A::5"
b.f(); // ok, print "B::3"

A& ab = b;
ab.f(); // !!! print "B::5" // the virtual table of A

// contains f(int i = 5) and
ab.g(); // !!! print "B::5" // g(int i = 5) but it points

// to B implementations
22/66



Pure Virtual Method 1/2

Pure Virtual Method
A pure virtual method is a function that must be implemented in derived classes
(concrete implementation)

Pure virtual functions can have or not have a body
struct A {

virtual void f() = 0; // pure virtual without body
virtual void g() = 0; // pure virtual with body

};
void A::g() {} // pure virtual implementation (body) for g()

struct B : A {
void f() override {} // must be implemented
void g() override {} // must be implemented

}; 23/66



Pure Virtual Method 2/2

A class with one pure virtual function cannot be instantiated
struct A {

virtual void f() = 0;
};

struct B1 : A {
// virtual void f() = 0; // implicitly declared
};

struct B2 : A {
void f() override {}

};

// A a; // "A" has a pure virtual method
// B1 b1; // "B1" has a pure virtual method
B2 b2; // ok 24/66



Abstract Class and Interface

• A class is interface if it has only pure virtual functions and optionally (suggested)
a virtual destructor. Interfaces do not have implementation or data

• A class is abstract if it has at least one pure virtual function
struct A { // INTERFACE

virtual ∼A(); // to implement
virtual void f() = 0;

};

struct B { // ABSTRACT CLASS
B() {} // abstract classes may have a contructor
virtual void g() = 0; // at least one pure virtual

protected:
int x; // additional data

};
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Inheritance Casting
and Run-time Type
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Hierarchy Casting

Class-casting allows implicit or explicit conversion of a class into another one across
its hierarchy
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Hierarchy Casting

Upcasting Conversion between a derived class reference or pointer to a base class
- It can be implicit or explicit
- It is safe
- static_cast or dynamic_cast // see next slides

Downcasting Conversion between a base class reference or pointer to a derived class
- It is only explicit
- It can be dangerous
- static_cast or dynamic_cast

Sidecasting (Cross-cast) Conversion between a class reference or pointer to another
class of the same hierarchy level

- It is only explicit
- It can be dangerous
- dynamic_cast
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Upcasting and Downcasting Example

struct A {
virtual void f() { cout << "A"; }

};
struct B : A {

int var = 3;
void f() override { cout << "B"; }

};

A a;
B b;
A& a1 = b; // implicit cast upcasting

static_cast<A&>(b).f(); // print "B" upcasting
static_cast<B&>(a).f(); // print "A" downcasting
cout << b.var; // print 3 (no cast)
cout << static_cast<B&>(a).var; // potential segfault!!! downcasting

// "var" does not exist in "A" 28/66



Sidecasting Example

struct A {
virtual void f() { cout << "A"; }

};

struct B1 : A {
void f() override { cout << "B1"; }

};
struct B2 : A {

void f() override { cout << "B2"; }
};

B1 b1;
B2 b2;
dynamic_cast<B2&>(b1).f(); // sidecasting, throw std::bad_cast
dynamic_cast<B1&>(b2).f(); // sidecasting, throw std::bad_cast
// static_cast<B1&>(b2).f(); // compile error
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Run-time Type Identification

RTTI
Run-Time Type Information (RTTI) is a mechanism that allows the type of object
to be determined at runtime

C++ expresses RTTI through three features:

• dynamic_cast keyword: conversion of polymorphic types

• typeid keyword: identifying the exact type of object

• type_info class: type information returned by the typeid operator

RTTI is available only for classes that are polymorphic, which means they have at least
one virtual method
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type_info and typeid

type_info class has the method name() which returns the name of the type

struct A {
virtual void f() {}

};

struct B : A {};

A a;
B b;
A& a1 = b; // implicit upcasting
cout << typeid(a).name(); // print "1A"
cout << typeid(b).name(); // print "1B"
cout << typeid(a1).name(); // print "1B"
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dynamic_cast

dynamic_cast , differently from static_cast , uses RTTI for deducing the
correctness of the output type
This operation happens at run-time and it is expensive

dynamic_cast<New>(Obj) has the following properties:

• Convert between a derived class Obj to a base class New → upcasting.
New/Obj are both pointers or references

• Throw std::bad_cast if New/Obj are references and New/Obj cannot be
converted

• Returns NULL if New/Obj are pointers and New/Obj cannot be converted
32/66



dynamic_cast Example 1

struct A {
virtual void f() { cout << "A"; }

};

struct B : A {
void f() override { cout << "B"; }

};

A a;
B b;
dynamic_cast<A&>(b).f(); // print "B" upcasting

// dynamic_cast<B&>(a).f(); // throw std::bad_cast
// wrong downcasting

dynamic_cast<B*>(&a); // returns nullptr
// wrong downcasting 33/66



dynamic_cast Example 2

struct A {
virtual void f() { cout << "A"; }

};
struct B : A {

void f() override { cout << "B"; }
};

A* get_object(bool selectA) {
return (selectA) ? new A() : new B();

}

void g(bool value) {
A* a = get_object(value);
B* b = dynamic_cast<B*>(a); // downcasting + check
if (b != nullptr)

b->f(); // exectuted only when it is safe
} 34/66
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Operator Overloading

Operator Overloading
Operator overloading is a special case of polymorphism in which some operators
are treated as polymorphic functions and have different behaviors depending on the
type of its arguments

struct Point {
int x, y;

Point operator+(const Point& p) const {
return {x + p.x, y + p.y};

}
};

Point a{1, 2};
Point b{5, 3};
Point c = a + b; // "c" is (6, 5) 35/66



Operator Overloading

Category Operators

Arithmetic + - * / % ++ –
Comparison == != < <= > >= <=>
Bitwise | & ^ ∼ « »
Logical ! && ||
Compound Assignment Arithmetic += -= *= /= %=
Compound Assignment Bitwise »= «= |= &= ^=
Subscript []
Function call ()
Address-of, Reference, Dereferencing & -> ->* *
Memory new new[] delete delete[]
Comma ,

• Categories not in bold are rarely used in practice
• Operators that cannot be overloaded: ? . .* :: sizeof typeid 36/66



Comparison Operator operator<

Relational and comparison operators operator<, <=, ==, >= > are used for
comparing two objects

In particular, the operator< is used to determine the ordering of a set of objects
(e.g. sort)
# include <algorithm>
struct A {

int x;

bool operator<(A a) const {
return x * x < a.x * a.x;

}
};
A array[] = {5, -1, 4, -7};
std::sort(array, array + 4);
// array: {-1, 4, 5, -7} 37/66



Spaceship Operator operator<=> 1/4

C++20 allows overloading the spaceship operator <=> (also called three-way
comparison) for replacing all comparison operators operator<, <=, ==, >= >

struct A {
bool operator==(const A&) const; // *** equal comparison is special,
bool operator!=(const A&) const; // see next slides
bool operator<(const A&) const;
bool operator<=(const A&) const;
bool operator>(const A&) const;
bool operator>=(const A&) const;

};

// replaced by
struct B {

auto operator<=>(const B&) const;
};

38/66



Spaceship Operator operator<=> 2/4

struct Obj {
int x;

auto operator<=>(const Obj& other) const {
return x - other.x; // or even better "x <=> other.x"

}
};

Obj a{3};
Obj b{5};
a < b; // true, operator< is generated
(a <=> b) < 0; // true

Note: a non-defaulted operator<=> doesn’t generate the operators == and !=
(see next slide)

Looks Like a Duck, Swims Like a Duck, and Quacks Like operator== 39/66

https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/#looks-like-a-duck-swims-like-a-duck-and-quacks-like-operator==


Spaceship Operator operator<=> 3/4

The compiler can also generate the code for the spaceship operator = default , even
for multiple fields and arrays, by using the default comparison semantic of its members
struct Obj {

int x;
char y;
short z[2];

auto operator<=>(const Obj&) const = default;
// if x == other.x, then compare y
// if y == other.y, then compare z
// if z[0] == other.z[0], then compare z[1]

};

Obj a{3}, b{5};
a == b; // false, operator== is generated (= default)
a != b; // true, operator!= is generated (= default) 40/66



Spaceship Operator operator<=> 4/4

The spaceship operator returns one of following ordering (classes) <compare> :

std::strong_ordering • If a is equivalent to b , f(a) is also equivalent to f(b)

• Exactly one of < , == , or > must be true
◦ e.g., integral types ( int , char )

std::weak_ordering • If a is equivalent to b , f(a) may not be equivalent to f(b)

• Exactly one of < , == , or > must be true
◦ e.g., rectangles R{2, 5} == R{5, 2}

std::partial_ordering • If a is equivalent to b , f(a) may not be equivalent to f(b)

• < , == , or > may all be false
◦ e.g., floating-point ( float with NaN )
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Subscript Operator operator[]

The array subscript operator[] allows accessing to an object in an array-like fashion

The operator accepts everything as parameter, not just integers
struct A {

char permutation[] {'c', 'b', 'd', 'a', 'h', 'y'};

char& operator[](char c) { // read/write
return permutation[c - 'a'];

}
char operator[](char c) const { // read only

return permutation[c - 'a'];
}

};

A a;
a['d'] = 't'; 42/66



Multidimensional Subscript Operator operator[]

C++23 introduces the multidimensional subscript operator and replaces the standard
behavior of the comma operator
struct A {

int operator[](int x) { return x; }
};
struct B {

int operator[](int x, int y) { return x * y; } // not allowed before C++23
};

int main() {
A a;
cout << a[3, 4]; // return 4 (bug)
B b;
cout << b[3, 4]; // return 12, C++23

}
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Function Call Operator operator()

The function call operator operator() is generally overloaded to create objects
which behave like functions, or for classes that have a primary operation (see Basic
Concepts IV lecture)

# include <numeric> // for std::accumulate

struct Multiply {
int operator()(int a, int b) const {

return a * b;
}

};

int array[] = { 2, 3, 4 };
int factorial = std::accumulate(array, array + 3, 1, Multiply{});
cout << factorial; // 24
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static operator() and static operator[]

C++23 introduces the static version of the function call operator operator()

and the subscript operator operator[] to avoid passing the this pointer

# include <numeric> // for std::accumulate

struct Multiply {
// int operator()(int a, int b); // declaration only

static int operator()(int a, int b); // best efficiency, no need to access
}; // internal data members

struct MyArray {
// int operator[](int x);

static int operator[](int x); // best efficiency
};
int array[] = { 2, 3, 4 };
int factorial = std::accumulate(array, array + 3, 1, Multiply{});

45/66



Conversion Operator operator T() 1/2

The conversion operator operator T() allows objects to be either implicitly or
explicitly (casting) converted to another type
class MyBool {

int x;
public:

MyBool(int x1) : x{x1} {}

operator bool() const { // implicit return type
return x == 0;

}
};

MyBool my_bool{3};
bool b = my_bool; // b = false, call operator bool()
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Conversion Operator operator T() 2/2

C++11 Conversion operators can be marked explicit to prevent implicit
conversions. It is a good practice as for class constructors
struct A {

operator bool() { return true; }
};

struct B {
explicit operator bool() { return true; }

};

A a;
B b;
bool c1 = a;
// bool c2 = b; // compile error: explicit
bool c3 = static_cast<bool>(b);
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Return Type Overloading Resolution ⋆

struct A {
operator float() { return 3.0f; }
operator int() { return 2; }

};

auto f() {
return A{};

}

float x = f();
int y = f();
cout << x << " " << y; // x=3.0f, y=2
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Increment and Decrement Operators operator++/–

The increment and decrement operators operator++, operator– are used to update
the value of a variable by one unit
struct A {

int* ptr;
int pos;
A& operator++() { // Prefix notation (++var):

++ptr; // returns the new copy of the object by-reference
++pos;
return *this;

}
A operator++(int a) { // Postfix notation (var++):

A tmp = *this; // returns the old copy of the object by-value
++ptr;
++pos;
return tmp;

}
};
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Assignment Operator operator= 1/3

The assignment operator operator= is used to copy values from one object to
another already existing object
# include <algorithm> //std::fill, std::copy
struct Array {

char* array;
int size;

Array(int size1, char value) : size{size1} {
array = new char[size];
std::fill(array, array + size, value);

}
∼Array() { delete[] array; }

Array& operator=(const Array& x) { .... } // --> see next slide
};
Array a{5, 'o'}; // ["ooooo"]
Array b{3, 'b'}; // ["bbb"]
a = b; // a = ["bbb"] <-- goal
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Assignment Operator operator= 2/3

• First option:
Array& operator=(const Array& x) {

if (this == &x) // (1) Check for self assignment
return *this;

delete[] array; // (2) Release class resources
size = x.size; // (3) Re-initialize class resources
array = new int[x.size];
std::copy(x.array, x.array + size, array); // (4) deep copy
return *this;

}

• Second option (less intuitive):
Array& operator=(Array x) { // pass by-value

swap(*this, x); // now we need a swap function for A
return *this; // x is destroyed at the end

} // --> see next slide 51/66



Assignment Operator operator= ⋆ 3/3

swap method:

friend void swap(A& x, A& y) {
using std::swap;
swap(x.size, y.size);
swap(x.array, y.array);

}

• why using std::swap ? if swap(x, y) finds a better match, it will use that
instead of std::swap

• why friend ? it allows the function to be used from outside the structure/class
scope

stackoverflow.com/questions/3279543
stackoverflow.com/questions/5695548 52/66
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Stream Operator operator«

The stream operation operator« can be overloaded to perform input and output for
user-defined types
# include <iostream>

struct Point {
int x, y;

friend std::ostream& operator<<(std::ostream& stream,
const Point& point) {

stream << "(" << point.x << "," << point.y << ")";
return stream;

}
// operator<< is a member of std::ostream -> need friend

}; // implementation and definition can be splitted (not suggested for operator<<)
Point point{1, 2};
std::cout << point; // print "(1, 2)" 53/66



Operators Precedence

Operators preserve precedence and short-circuit properties
struct MyInt {

int x;

int operator^(int exp) { // exponential
int ret = 1;
for (int i = 0; i < exp; i++)

ret *= x;
return ret;

}
};
MyInt x{3};
int y = x^2;
cout << y; // 9
int z = x^2 + 2;
cout << z; // 81 !!! 54/66



Binary Operators Note

Binary operators should be implemented as friend methods
struct A {}; struct C {};

struct B : A {
bool operator==(const A& x) { return true; }

};
struct D : C {

friend bool operator==(const C& x, const C& y) { return true; } // inline
};
// bool operator==(const C& x, const C& y) { return true; } // out-of-line

A a; B b; C c; D d;
b == a; // ok
// a == b; // compile error // "A" does not have == operator
c == d; // ok, use operator==(const C&, const C&)
d == c; // ok, use operator==(const C&, const C&) 55/66



C++ Object Layout
⋆



Overview

The term layout refers to how an object is arranged in memory

C++ defines four types of layouts:

• aggregate

• trivial copyable

• standard layout

• plain-old data (POD)

Such layouts are important to understand how the C++ objects interact with pure C
API and for optimization purposes, e.g. pass in registers, memcpy , and serialization
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Aggregate 1/3

Aggregate
An aggregate � is an array, struct, or class which supports aggregate
initialization (form of list-initialization) through curly braces syntax {}

• No user-provided constructors
• No private / protected non- static data members and base class
• No virtual functions
* No base classes, until C++17
* No brace-or-equal-initializers for non-static data members, until C++14
R Apply recursively to base classes non- static data members

No restrictions:
• Non- static uninitialized (until C++14) data and function members
• static data and function members

stackoverflow.com/questions/4178175 57/66

https://en.cppreference.com/w/cpp/language/aggregate_initialization
https://stackoverflow.com/questions/4178175/what-are-aggregates-and-trivial-types-pods-and-how-why-are-they-special


Aggregate - Examples 2/3

struct Aggregate {
int x; // ok, public member
int y[3]; // ok, arrays are also fine
int z { 3 }; // only C++14

Aggregate() = default; // ok, defaulted constructor
Aggregate& operator=(const& Aggregate); // ok, function

private: // copy-assignment
void f() {} // ok, private function

};

struct NotAggregate1 {
NotAggregate1(); // !! user-provided constructor
virtual void f(); // !! virtual function

};
class NotAggregate2 : NotAggregate1 { // !! the base class is not an aggregate

int x; // !! x is private
NotAggregate1 y; // !! y is not an aggregate (recursive property)

}; 58/66



Aggregate - Examples 3/3

struct Aggregate1 {
int x;
struct Aggregate2 {

int a;
int b[3];

} y;
};

int array1[3] = {1, 2, 3};
int array2[3] {1, 2, 3};
Aggregate1 agg1 = {1, {2, {3, 4, 5}}};
Aggregate1 agg2 {1, {2, {3, 4, 5}}};
Aggregate1 agg3 = {1, 2, 3, 4, 5};
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Trivial Class 1/2

Trivial Class
A Trivial Class � is a class trivial copyable � (supports memcpy)

Trivial copyable:
• No user-provided copy/move/default constructors, destructor, and copy/move

assignment operators
• No virtual functions
R Apply recursively to base classes and non- static data members

No restrictions:
• User-declared constructors different from copy/move/default
• Functions or static ,non- static data members initialization
• protected / private members
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https://en.cppreference.com/w/cpp/language/classes
https://en.cppreference.com/w/cpp/language/classes#Trivially_copyable_class


Trivial Class - Examples 2/2

struct NonTrivial {
NonTrivial(); // !! user-provided constructor
virtual void f(); // !! virtual function

};

struct Trivial1 {
Trivial1() = default; // ok, defaulted constructor
Trivial1(int) {} // ok, user-default constructor
static int x; // ok, static member
void f(); // ok, function

private:
int z { 3 } // ok, private and initialized

};
struct Trivial2 : Trivial1 { // ok, base class is trivial

int Trivial1[3]; // ok, array of trivials is trivial
};
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Standard-Layout Class 1/2

Standard-Layout
A standard-layout class � is a class with the same memory layout of the
equivalent C struct or union (useful for communicating with other languages)

• No virtual functions

• Only one control access ( public / protected / private ) for all non- static
data members

• No base classes with non- static data members

• No base classes of the same type as the first non- static data member

R Apply recursively to base classes and non- static data members

62/66

https://en.cppreference.com/w/cpp/language/classes#Standard-layout_class


Standard-Layout Class (examples) 2/2

struct StandardLayout1 {
StandardLayout1(); // ok, user-provided contructor
void f(); // ok, non-virtual function

};

class StandardLayout2 : StandardLayout1 {
int x, y; // ok, both are private
StandardLayout1 y; // ok, 'y' is not the first data member

};

struct StandardLayout4 : StandardLayout1, StandardLayout2 {
// ok, can use multiple inheritance as long as only
// one class in the hierarchy has non-static data members

};
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Plain Old Data (POD)

Plain Old Data (POD): Trivial copyable (T) + Standard-Layout (S)

(T) No user-provided copy/move/default constructors, destructor, and copy/move
assignment operators

(S) Only one control access ( public / protected / private ) for all non- static
data members

(S) No base classes with non- static data members

(S) No base classes of the same type as the first non- static data member

(T, S) No virtual functions

R Apply recursively to base classes and non- static data members
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C++ std Utilities

C++11 provides three utilities to check if a type is POD, Trivial Copyable,
Standard-Layout

• std::is_pod checks for POD, deprecated in C++20
• std::is_trivially_copyable checks for trivial copyable
• std::is_standard_layout checks for standard-layout

# include <type_traits>

struct A {
int x;

private:
int y;

};

cout << std::is_trivially_copyable_v<A>; // true
cout << std::is_standard_layout_v<A>; // false
cout << std::is_pod_v<A>; // false 65/66



Object Layout Hierarchy
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