
Modern C++
Programming
10. Object-Oriented

Programming II
Polymorphism and Operator Overloading

Federico Busato
2026-01-06

Table of Contents

1 Polymorphism
C++ Mechanisms for Polymorphism

virtual Methods

Virtual Table

override Keyword

final Keyword

Common Errors

Pure Virtual Method

Abstract Class and Interface

2 Inheritance Casting and Run-time Type Identification ⋆
1/66

Table of Contents

3 Operator Overloading
Overview

Comparison Operator operator<

Spaceship Operator operator<=>

Subscript Operator operator[]

Multidimensional Subscript Operator operator[]

Function Call Operator operator()

static operator() and static operator[]

Conversion Operator operator T()

Return Type Overloading Resolution ⋆
2/66

Table of Contents

Increment and Decrement Operators operator++/–

Assignment Operator operator type=

Stream Operator operator«

Operator Notes

4 C++ Object Layout ⋆

Aggregate

Trivial Class

Standard-Layout Class

Plain Old Data (POD)

Hierarchy
3/66

Polymorphism

Polymorphism

Polymorphism
Polymorphism (meaning “having multiple forms”) is the capability of an entity of
mutating its behavior in accordance with the specific usage context

Polymorphism dispatch can be implemented at

• Compile-time (static polymorphism): when the called instance is known
before the program start

• Run-time (dynamic polymorphism): when the called instance is known only
during the execution, i.e. depends on run-time values

In C++, the term polymorphic is strongly associated with dynamic polymorphism
(overriding)

4/66

Function Binding

Connecting the function call to the function body is called Binding
• In Early Binding or Static Binding or Compile-time Binding, the compiler identifies

the type of object at compile-time
- the program can jump directly to the function address

• In Late Binding or Dynamic Binding or Run-time binding, the run-time identifies
the type of object at execution-time and then matches the function call with the
correct function definition

- the program has to read the address held in the pointer and then jump to that
address (less efficient since it involves an extra level of indirection)

C++ achieves late binding by declaring a virtual function

5/66

Polymorphism Forms

• Ad-hoc polymorphism: when it involves to a set of individually specified types,
e.g. function overloading
void f(int);
void f(double);

• Parametric polymorphism: when it involves generic types, e.g. templates
template<typename T>
void f(T);

• Subtyping : when it operates on elements of subtypes, e.g. virtual functions
// B : A
void f(A*); // also works for B if the called function are virtual

6/66

C++ Mechanisms for Polymorphism 1/2

• Preprocessing
define ADD(x, y) x + y // ADD(3, 4) or ADD(3.0, 4.0)

• Function/Operator overloading
void f(int);
void f(double);

• Templates
template<typename T>
void f(T); // f(3) or f(3.0)

• Virtual functions (see next slides)

7/66

C++ Mechanisms for Polymorphism 2/2

Mechanism Implementation Form

Preprocessing static Parametric

Function/Operator overloading static Ad-hoc

Template static Parametric

Virtual function dynamic Subtyping

8/66

Dynamic Polymorphism in C++

• At run-time, objects of a base class behave as objects of a derived class

• A Base class may define and implement polymorphic methods, and derived
classes can override them, which means they provide their own implementations,
invoked at run-time depending on the context

struct A {
void f() { cout << "A"; }

};
struct B : A {

void f() { cout << "B"; }
};
void g(A& a) { a.f(); } // accepts A and B

// note: g(B&) would only accept B
A a; B b;
g(a); // print "A"
g(b); // print "A" not "B"!!! 9/66

Polymorphism - virtual method

struct A {
virtual void f() { cout << "A"; }

}; // now "f()" is virtual, evaluated at run-time

struct B : A {
void f() override { cout << "B"; }
// now B::f() overrides A::f(), run-time dispatch
// 'virtual void f()' is also valid

}; // 'override' is a c++11 feature, more details in the next slides

void g(A& a) { a.f(); } // accepts A and B

A a;
B b;
g(a); // print "A"
g(b); // NOW, print "B"!!!

10/66

When virtual works

struct A {
virtual void f() { cout << "A"; }

};

struct B : A {
void f() override { cout << "B"; }

};

void f(A& a) { a.f(); } // ok, print "B"
void g(A* a) { a->f(); } // ok, print "B"
void h(A a) { a.f(); } // does not work with pass-by value!! print "A"

B b;
f(b); // print "B"
g(&b); // print "B"
h(b); // print "A" (cast to A)

11/66

Polymorphism Dynamic Behavior

struct A {
virtual void f() { cout << "A"; }

};

struct B : A {
void f() override { cout << "B"; }

};

A* get_object(bool selectA) {
return (selectA) ? new A() : new B();

}

get_object(true)->f(); // print "A"
get_object(false)->f(); // print "B"

12/66

Virtual Table 1/2

vtable
The virtual table (vtable) is a lookup table of functions used to resolve function
calls and support dynamic dispatch (late binding)

A virtual table contains one entry for each virtual function that can be called by
objects of the class. Each entry in this table is simply a function pointer that points to
the most-derived function accessible by that class

The compiler adds a hidden pointer to the base class which points to the virtual table
for that class (sizeof considers the vtable pointer)

13/66

Virtual Table 2/2

struct A {
virtual void f();
virtual void g();

};

struct B : A {
void f() override;

};

14/66

Does the vtable really exist? (answer: YES)

struct A {
int x = 3;
virtual void f() { cout << "abc"; }

};

A* a1 = new A;
A* a2 = (A*) malloc(sizeof(A));

cout << a1->x; // print "3"
cout << a2->x; // undefined value!!
a1->f(); // print "abc"
a2->f(); // segmentation fault A

Lesson learned: Never use malloc in C++

15/66

Virtual Method Notes

virtual classes allocate one extra pointer (hidden)

struct A {
virtual void f1();
virtual void f2();

};

class B : A {};

cout << sizeof(A); // 8 bytes (vtable pointer)
cout << sizeof(B); // 8 bytes (vtable pointer)

16/66

override Keyword 1/2

override Keyword (C++11)
The override keyword ensures that the function is virtual and is overriding a
virtual function from a base class

• It forces the compiler to check the base class to see if there is a virtual
function with this exact signature

• override clearly expresses the intent of the function, making the code easier to
understand

override implies virtual (virtual should be omitted)

17/66

override Keyword 2/2

struct A {
virtual void f(int a); // a "float" value is casted to "int"

}; // ∗ ∗ ∗

struct B : A {
void f(int a) override; // ok
void f(float a); // (still) very dangerous!!

// ∗ ∗ ∗

// void f(float a) override; // compile error not safe
// void f(int a) const override; // compile error not safe
};

// ∗ ∗ ∗ f(3.3f) has a different behavior between A and B

18/66

final Keyword

final Keyword (C++11)
The final keyword prevents inheriting from classes or overriding methods in
derived classes

struct A {
virtual void f(int a) final; // "final" method

};

struct B : A {
// void f(int a); // compile error f(int) is "final"

void f(float a); // dangerous (still possible)
}; // "override" prevents these errors

struct C final { // cannot be extended
};
// struct D : C { // compile error C is "final"
// };

19/66

Virtual Methods (Common Error 1)

All classes with at least one virtual method should declare a virtual
destructor
struct A {

∼A() { cout << "A"; } // <-- here the problem (not virtual)
virtual void f(int a) {}

};
struct B : A {

int* array;
B() { array = new int[1000000]; }
∼B() { delete[] array; }

};
//--
void destroy(A* a) {

delete a; // call ∼A()
}
B* b = new B;
destroy(b); // without virtual, ∼B() is not called

// destroy() prints only "A" -> huge memory leak!! 20/66

Virtual Methods (Common Error 2)

Do not call virtual methods in constructor and destructor
• Constructor : The derived class is not ready until constructor is completed
• Destructor : The derived class is already destroyed

struct A {
A() { f(); } // what instance is called? "B" is not ready

// it calls A::f(), even though A::f() is virtual
virtual void f() { cout << "Explosion"; }

};
struct B : A {

B() = default; // call A(). Note: A() may be also implicit

void f() override { cout << "Safe"; }
};

B b; // call B(), print "Explosion", not "Safe"!! 21/66

Virtual Methods (Common Error 3)

Do not use default parameters in virtual methods
Default parameters are not inherited
struct A {

virtual void f(int i = 5) { cout << "A::" << i << "\n"; }
virtual void g(int i = 5) { cout << "A::" << i << "\n"; }

};
struct B : A {

void f(int i = 3) override { cout << "B::" << i << "\n"; }
void g(int i) override { cout << "B::" << i << "\n"; }

};
A a; B b;
a.f(); // ok, print "A::5"
b.f(); // ok, print "B::3"

A& ab = b;
ab.f(); // !!! print "B::5" // the virtual table of A

// contains f(int i = 5) and
ab.g(); // !!! print "B::5" // g(int i = 5) but it points

// to B implementations
22/66

Pure Virtual Method 1/2

Pure Virtual Method
A pure virtual method is a function that must be implemented in derived classes
(concrete implementation)

Pure virtual functions can have or not have a body
struct A {

virtual void f() = 0; // pure virtual without body
virtual void g() = 0; // pure virtual with body

};
void A::g() {} // pure virtual implementation (body) for g()

struct B : A {
void f() override {} // must be implemented
void g() override {} // must be implemented

}; 23/66

Pure Virtual Method 2/2

A class with one pure virtual function cannot be instantiated
struct A {

virtual void f() = 0;
};

struct B1 : A {
// virtual void f() = 0; // implicitly declared
};

struct B2 : A {
void f() override {}

};

// A a; // "A" has a pure virtual method
// B1 b1; // "B1" has a pure virtual method
B2 b2; // ok 24/66

Abstract Class and Interface

• A class is interface if it has only pure virtual functions and optionally (suggested)
a virtual destructor. Interfaces do not have implementation or data

• A class is abstract if it has at least one pure virtual function
struct A { // INTERFACE

virtual ∼A(); // to implement
virtual void f() = 0;

};

struct B { // ABSTRACT CLASS
B() {} // abstract classes may have a contructor
virtual void g() = 0; // at least one pure virtual

protected:
int x; // additional data

};
25/66

Inheritance Casting
and Run-time Type
Identification ⋆

Hierarchy Casting

Class-casting allows implicit or explicit conversion of a class into another one across
its hierarchy

26/66

Hierarchy Casting

Upcasting Conversion between a derived class reference or pointer to a base class
- It can be implicit or explicit
- It is safe
- static_cast or dynamic_cast // see next slides

Downcasting Conversion between a base class reference or pointer to a derived class
- It is only explicit
- It can be dangerous
- static_cast or dynamic_cast

Sidecasting (Cross-cast) Conversion between a class reference or pointer to another
class of the same hierarchy level

- It is only explicit
- It can be dangerous
- dynamic_cast

27/66

Upcasting and Downcasting Example

struct A {
virtual void f() { cout << "A"; }

};
struct B : A {

int var = 3;
void f() override { cout << "B"; }

};

A a;
B b;
A& a1 = b; // implicit cast upcasting

static_cast<A&>(b).f(); // print "B" upcasting
static_cast<B&>(a).f(); // print "A" downcasting
cout << b.var; // print 3 (no cast)
cout << static_cast<B&>(a).var; // potential segfault!!! downcasting

// "var" does not exist in "A" 28/66

Sidecasting Example

struct A {
virtual void f() { cout << "A"; }

};

struct B1 : A {
void f() override { cout << "B1"; }

};
struct B2 : A {

void f() override { cout << "B2"; }
};

B1 b1;
B2 b2;
dynamic_cast<B2&>(b1).f(); // sidecasting, throw std::bad_cast
dynamic_cast<B1&>(b2).f(); // sidecasting, throw std::bad_cast
// static_cast<B1&>(b2).f(); // compile error

29/66

Run-time Type Identification

RTTI
Run-Time Type Information (RTTI) is a mechanism that allows the type of object
to be determined at runtime

C++ expresses RTTI through three features:

• dynamic_cast keyword: conversion of polymorphic types

• typeid keyword: identifying the exact type of object

• type_info class: type information returned by the typeid operator

RTTI is available only for classes that are polymorphic, which means they have at least
one virtual method

30/66

type_info and typeid

type_info class has the method name() which returns the name of the type

struct A {
virtual void f() {}

};

struct B : A {};

A a;
B b;
A& a1 = b; // implicit upcasting
cout << typeid(a).name(); // print "1A"
cout << typeid(b).name(); // print "1B"
cout << typeid(a1).name(); // print "1B"

31/66

dynamic_cast

dynamic_cast , differently from static_cast , uses RTTI for deducing the
correctness of the output type
This operation happens at run-time and it is expensive

dynamic_cast<New>(Obj) has the following properties:

• Convert between a derived class Obj to a base class New → upcasting.
New/Obj are both pointers or references

• Throw std::bad_cast if New/Obj are references and New/Obj cannot be
converted

• Returns NULL if New/Obj are pointers and New/Obj cannot be converted
32/66

dynamic_cast Example 1

struct A {
virtual void f() { cout << "A"; }

};

struct B : A {
void f() override { cout << "B"; }

};

A a;
B b;
dynamic_cast<A&>(b).f(); // print "B" upcasting

// dynamic_cast<B&>(a).f(); // throw std::bad_cast
// wrong downcasting

dynamic_cast<B*>(&a); // returns nullptr
// wrong downcasting 33/66

dynamic_cast Example 2

struct A {
virtual void f() { cout << "A"; }

};
struct B : A {

void f() override { cout << "B"; }
};

A* get_object(bool selectA) {
return (selectA) ? new A() : new B();

}

void g(bool value) {
A* a = get_object(value);
B* b = dynamic_cast<B*>(a); // downcasting + check
if (b != nullptr)

b->f(); // exectuted only when it is safe
} 34/66

Operator
Overloading

Operator Overloading

Operator Overloading
Operator overloading is a special case of polymorphism in which some operators
are treated as polymorphic functions and have different behaviors depending on the
type of its arguments

struct Point {
int x, y;

Point operator+(const Point& p) const {
return {x + p.x, y + p.y};

}
};

Point a{1, 2};
Point b{5, 3};
Point c = a + b; // "c" is (6, 5) 35/66

Operator Overloading

Category Operators

Arithmetic + - * / % ++ –
Comparison == != < <= > >= <=>
Bitwise | & ^ ∼ « »
Logical ! && ||
Compound Assignment Arithmetic += -= *= /= %=
Compound Assignment Bitwise »= «= |= &= ^=
Subscript []
Function call ()
Address-of, Reference, Dereferencing & -> ->* *
Memory new new[] delete delete[]
Comma ,

• Categories not in bold are rarely used in practice
• Operators that cannot be overloaded: ? . .* :: sizeof typeid 36/66

Comparison Operator operator<

Relational and comparison operators operator<, <=, ==, >= > are used for
comparing two objects

In particular, the operator< is used to determine the ordering of a set of objects
(e.g. sort)
include <algorithm>
struct A {

int x;

bool operator<(A a) const {
return x * x < a.x * a.x;

}
};
A array[] = {5, -1, 4, -7};
std::sort(array, array + 4);
// array: {-1, 4, 5, -7} 37/66

Spaceship Operator operator<=> 1/4

C++20 allows overloading the spaceship operator <=> (also called three-way
comparison) for replacing all comparison operators operator<, <=, ==, >= >

struct A {
bool operator==(const A&) const; // *** equal comparison is special,
bool operator!=(const A&) const; // see next slides
bool operator<(const A&) const;
bool operator<=(const A&) const;
bool operator>(const A&) const;
bool operator>=(const A&) const;

};

// replaced by
struct B {

auto operator<=>(const B&) const;
};

38/66

Spaceship Operator operator<=> 2/4

struct Obj {
int x;

auto operator<=>(const Obj& other) const {
return x - other.x; // or even better "x <=> other.x"

}
};

Obj a{3};
Obj b{5};
a < b; // true, operator< is generated
(a <=> b) < 0; // true

Note: a non-defaulted operator<=> doesn’t generate the operators == and !=
(see next slide)

Looks Like a Duck, Swims Like a Duck, and Quacks Like operator== 39/66

https://devblogs.microsoft.com/cppblog/simplify-your-code-with-rocket-science-c20s-spaceship-operator/#looks-like-a-duck-swims-like-a-duck-and-quacks-like-operator==

Spaceship Operator operator<=> 3/4

The compiler can also generate the code for the spaceship operator = default , even
for multiple fields and arrays, by using the default comparison semantic of its members
struct Obj {

int x;
char y;
short z[2];

auto operator<=>(const Obj&) const = default;
// if x == other.x, then compare y
// if y == other.y, then compare z
// if z[0] == other.z[0], then compare z[1]

};

Obj a{3}, b{5};
a == b; // false, operator== is generated (= default)
a != b; // true, operator!= is generated (= default) 40/66

Spaceship Operator operator<=> 4/4

The spaceship operator returns one of following ordering (classes) <compare> :

std::strong_ordering • If a is equivalent to b , f(a) is also equivalent to f(b)

• Exactly one of < , == , or > must be true
◦ e.g., integral types (int , char)

std::weak_ordering • If a is equivalent to b , f(a) may not be equivalent to f(b)

• Exactly one of < , == , or > must be true
◦ e.g., rectangles R{2, 5} == R{5, 2}

std::partial_ordering • If a is equivalent to b , f(a) may not be equivalent to f(b)

• < , == , or > may all be false
◦ e.g., floating-point (float with NaN)

41/66

Subscript Operator operator[]

The array subscript operator[] allows accessing to an object in an array-like fashion

The operator accepts everything as parameter, not just integers
struct A {

char permutation[] {'c', 'b', 'd', 'a', 'h', 'y'};

char& operator[](char c) { // read/write
return permutation[c - 'a'];

}
char operator[](char c) const { // read only

return permutation[c - 'a'];
}

};

A a;
a['d'] = 't'; 42/66

Multidimensional Subscript Operator operator[]

C++23 introduces the multidimensional subscript operator and replaces the standard
behavior of the comma operator
struct A {

int operator[](int x) { return x; }
};
struct B {

int operator[](int x, int y) { return x * y; } // not allowed before C++23
};

int main() {
A a;
cout << a[3, 4]; // return 4 (bug)
B b;
cout << b[3, 4]; // return 12, C++23

}
43/66

Function Call Operator operator()

The function call operator operator() is generally overloaded to create objects
which behave like functions, or for classes that have a primary operation (see Basic
Concepts IV lecture)

include <numeric> // for std::accumulate

struct Multiply {
int operator()(int a, int b) const {

return a * b;
}

};

int array[] = { 2, 3, 4 };
int factorial = std::accumulate(array, array + 3, 1, Multiply{});
cout << factorial; // 24

44/66

static operator() and static operator[]

C++23 introduces the static version of the function call operator operator()

and the subscript operator operator[] to avoid passing the this pointer

include <numeric> // for std::accumulate

struct Multiply {
// int operator()(int a, int b); // declaration only

static int operator()(int a, int b); // best efficiency, no need to access
}; // internal data members

struct MyArray {
// int operator[](int x);

static int operator[](int x); // best efficiency
};
int array[] = { 2, 3, 4 };
int factorial = std::accumulate(array, array + 3, 1, Multiply{});

45/66

Conversion Operator operator T() 1/2

The conversion operator operator T() allows objects to be either implicitly or
explicitly (casting) converted to another type
class MyBool {

int x;
public:

MyBool(int x1) : x{x1} {}

operator bool() const { // implicit return type
return x == 0;

}
};

MyBool my_bool{3};
bool b = my_bool; // b = false, call operator bool()

46/66

Conversion Operator operator T() 2/2

C++11 Conversion operators can be marked explicit to prevent implicit
conversions. It is a good practice as for class constructors
struct A {

operator bool() { return true; }
};

struct B {
explicit operator bool() { return true; }

};

A a;
B b;
bool c1 = a;
// bool c2 = b; // compile error: explicit
bool c3 = static_cast<bool>(b);

47/66

Return Type Overloading Resolution ⋆

struct A {
operator float() { return 3.0f; }
operator int() { return 2; }

};

auto f() {
return A{};

}

float x = f();
int y = f();
cout << x << " " << y; // x=3.0f, y=2

48/66

Increment and Decrement Operators operator++/–

The increment and decrement operators operator++, operator– are used to update
the value of a variable by one unit
struct A {

int* ptr;
int pos;
A& operator++() { // Prefix notation (++var):

++ptr; // returns the new copy of the object by-reference
++pos;
return *this;

}
A operator++(int a) { // Postfix notation (var++):

A tmp = *this; // returns the old copy of the object by-value
++ptr;
++pos;
return tmp;

}
};

49/66

Assignment Operator operator= 1/3

The assignment operator operator= is used to copy values from one object to
another already existing object
include <algorithm> //std::fill, std::copy
struct Array {

char* array;
int size;

Array(int size1, char value) : size{size1} {
array = new char[size];
std::fill(array, array + size, value);

}
∼Array() { delete[] array; }

Array& operator=(const Array& x) { } // --> see next slide
};
Array a{5, 'o'}; // ["ooooo"]
Array b{3, 'b'}; // ["bbb"]
a = b; // a = ["bbb"] <-- goal

50/66

Assignment Operator operator= 2/3

• First option:
Array& operator=(const Array& x) {

if (this == &x) // (1) Check for self assignment
return *this;

delete[] array; // (2) Release class resources
size = x.size; // (3) Re-initialize class resources
array = new int[x.size];
std::copy(x.array, x.array + size, array); // (4) deep copy
return *this;

}

• Second option (less intuitive):
Array& operator=(Array x) { // pass by-value

swap(*this, x); // now we need a swap function for A
return *this; // x is destroyed at the end

} // --> see next slide 51/66

Assignment Operator operator= ⋆ 3/3

swap method:

friend void swap(A& x, A& y) {
using std::swap;
swap(x.size, y.size);
swap(x.array, y.array);

}

• why using std::swap ? if swap(x, y) finds a better match, it will use that
instead of std::swap

• why friend ? it allows the function to be used from outside the structure/class
scope

stackoverflow.com/questions/3279543
stackoverflow.com/questions/5695548 52/66

stackoverflow.com/questions/3279543
stackoverflow.com/questions/5695548

Stream Operator operator«

The stream operation operator« can be overloaded to perform input and output for
user-defined types
include <iostream>

struct Point {
int x, y;

friend std::ostream& operator<<(std::ostream& stream,
const Point& point) {

stream << "(" << point.x << "," << point.y << ")";
return stream;

}
// operator<< is a member of std::ostream -> need friend

}; // implementation and definition can be splitted (not suggested for operator<<)
Point point{1, 2};
std::cout << point; // print "(1, 2)" 53/66

Operators Precedence

Operators preserve precedence and short-circuit properties
struct MyInt {

int x;

int operator^(int exp) { // exponential
int ret = 1;
for (int i = 0; i < exp; i++)

ret *= x;
return ret;

}
};
MyInt x{3};
int y = x^2;
cout << y; // 9
int z = x^2 + 2;
cout << z; // 81 !!! 54/66

Binary Operators Note

Binary operators should be implemented as friend methods
struct A {}; struct C {};

struct B : A {
bool operator==(const A& x) { return true; }

};
struct D : C {

friend bool operator==(const C& x, const C& y) { return true; } // inline
};
// bool operator==(const C& x, const C& y) { return true; } // out-of-line

A a; B b; C c; D d;
b == a; // ok
// a == b; // compile error // "A" does not have == operator
c == d; // ok, use operator==(const C&, const C&)
d == c; // ok, use operator==(const C&, const C&) 55/66

C++ Object Layout
⋆

Overview

The term layout refers to how an object is arranged in memory

C++ defines four types of layouts:

• aggregate

• trivial copyable

• standard layout

• plain-old data (POD)

Such layouts are important to understand how the C++ objects interact with pure C
API and for optimization purposes, e.g. pass in registers, memcpy , and serialization

56/66

Aggregate 1/3

Aggregate
An aggregate � is an array, struct, or class which supports aggregate
initialization (form of list-initialization) through curly braces syntax {}

• No user-provided constructors
• No private / protected non- static data members and base class
• No virtual functions
* No base classes, until C++17
* No brace-or-equal-initializers for non-static data members, until C++14
R Apply recursively to base classes non- static data members

No restrictions:
• Non- static uninitialized (until C++14) data and function members
• static data and function members

stackoverflow.com/questions/4178175 57/66

https://en.cppreference.com/w/cpp/language/aggregate_initialization
https://stackoverflow.com/questions/4178175/what-are-aggregates-and-trivial-types-pods-and-how-why-are-they-special

Aggregate - Examples 2/3

struct Aggregate {
int x; // ok, public member
int y[3]; // ok, arrays are also fine
int z { 3 }; // only C++14

Aggregate() = default; // ok, defaulted constructor
Aggregate& operator=(const& Aggregate); // ok, function

private: // copy-assignment
void f() {} // ok, private function

};

struct NotAggregate1 {
NotAggregate1(); // !! user-provided constructor
virtual void f(); // !! virtual function

};
class NotAggregate2 : NotAggregate1 { // !! the base class is not an aggregate

int x; // !! x is private
NotAggregate1 y; // !! y is not an aggregate (recursive property)

}; 58/66

Aggregate - Examples 3/3

struct Aggregate1 {
int x;
struct Aggregate2 {

int a;
int b[3];

} y;
};

int array1[3] = {1, 2, 3};
int array2[3] {1, 2, 3};
Aggregate1 agg1 = {1, {2, {3, 4, 5}}};
Aggregate1 agg2 {1, {2, {3, 4, 5}}};
Aggregate1 agg3 = {1, 2, 3, 4, 5};

59/66

Trivial Class 1/2

Trivial Class
A Trivial Class � is a class trivial copyable � (supports memcpy)

Trivial copyable:
• No user-provided copy/move/default constructors, destructor, and copy/move

assignment operators
• No virtual functions
R Apply recursively to base classes and non- static data members

No restrictions:
• User-declared constructors different from copy/move/default
• Functions or static ,non- static data members initialization
• protected / private members

60/66

https://en.cppreference.com/w/cpp/language/classes
https://en.cppreference.com/w/cpp/language/classes#Trivially_copyable_class

Trivial Class - Examples 2/2

struct NonTrivial {
NonTrivial(); // !! user-provided constructor
virtual void f(); // !! virtual function

};

struct Trivial1 {
Trivial1() = default; // ok, defaulted constructor
Trivial1(int) {} // ok, user-default constructor
static int x; // ok, static member
void f(); // ok, function

private:
int z { 3 } // ok, private and initialized

};
struct Trivial2 : Trivial1 { // ok, base class is trivial

int Trivial1[3]; // ok, array of trivials is trivial
};

61/66

Standard-Layout Class 1/2

Standard-Layout
A standard-layout class � is a class with the same memory layout of the
equivalent C struct or union (useful for communicating with other languages)

• No virtual functions

• Only one control access (public / protected / private) for all non- static
data members

• No base classes with non- static data members

• No base classes of the same type as the first non- static data member

R Apply recursively to base classes and non- static data members

62/66

https://en.cppreference.com/w/cpp/language/classes#Standard-layout_class

Standard-Layout Class (examples) 2/2

struct StandardLayout1 {
StandardLayout1(); // ok, user-provided contructor
void f(); // ok, non-virtual function

};

class StandardLayout2 : StandardLayout1 {
int x, y; // ok, both are private
StandardLayout1 y; // ok, 'y' is not the first data member

};

struct StandardLayout4 : StandardLayout1, StandardLayout2 {
// ok, can use multiple inheritance as long as only
// one class in the hierarchy has non-static data members

};

63/66

Plain Old Data (POD)

Plain Old Data (POD): Trivial copyable (T) + Standard-Layout (S)

(T) No user-provided copy/move/default constructors, destructor, and copy/move
assignment operators

(S) Only one control access (public / protected / private) for all non- static
data members

(S) No base classes with non- static data members

(S) No base classes of the same type as the first non- static data member

(T, S) No virtual functions

R Apply recursively to base classes and non- static data members
64/66

C++ std Utilities

C++11 provides three utilities to check if a type is POD, Trivial Copyable,
Standard-Layout

• std::is_pod checks for POD, deprecated in C++20
• std::is_trivially_copyable checks for trivial copyable
• std::is_standard_layout checks for standard-layout

include <type_traits>

struct A {
int x;

private:
int y;

};

cout << std::is_trivially_copyable_v<A>; // true
cout << std::is_standard_layout_v<A>; // false
cout << std::is_pod_v<A>; // false 65/66

Object Layout Hierarchy

66/66

	Polymorphism
	C++ Mechanisms for Polymorphism
	virtual Methods
	Virtual Table
	override Keyword
	final Keyword
	Common Errors
	Pure Virtual Method
	Abstract Class and Interface

	Inheritance Casting and Run-time Type Identification
	Operator Overloading
	Overview
	Comparison Operator operator<
	Spaceship Operator operator<=>
	Subscript Operator operator[]
	Multidimensional Subscript Operator operator[]
	Function Call Operator operator()
	static operator() and static operator[]
	Conversion Operator operator T()
	Return Type Overloading Resolution

	tmp
	Increment and Decrement Operators operator++/–
	Assignment Operator operator type=
	Stream Operator operator<<
	Operator Notes

	C++ Object Layout
	Aggregate
	Trivial Class
	Standard-Layout Class
	Plain Old Data (POD)
	Hierarchy

