
Modern C++
Programming
9. Object-Oriented

Programming I
Class Concepts

Federico Busato
2026-01-06

Table of Contents

1 C++ Classes
RAII Idiom

2 Class Hierarchy

3 Access specifiers
Inheritance Access Specifiers

When Use public/protected/private/ for Data Members?

1/68

Table of Contents

4 Class Constructor
Default Constructor

Class Initialization

Uniform Initialization for Objects

Delegate Constructor

explicit Keyword

2/68

Table of Contents

5 Copy Constructor

6 Class Destructor

7 Defaulted Constructors, Destructor, and Operators
(=default)

3/68

Table of Contents

8 Class Keywords
this

static

const

mutable

using

friend

delete

4/68

C++ Classes

C++ Classes

C Structure
A C structure (struct) is a collection of variables of the same or different data
types under a single name

C++ Class
A class (class) extends the concept of structure to hold functions as members

struct vs. class in C++
Structures and classes are semantically equivalent in C++. However, the keywords
should be used to distinguish between different semantics:
• struct represents passive objects, namely the physical state (set of data)
• class represents active objects, namely the logical state (data abstraction)

5/68

Class Members - Data and Function Members

Data Member
Data within a class are called data members or class fields

Function Member
Functions within a class are called function members or methods

6/68

RAII Idiom - Resource Acquisition is Initialization

Holding a resource is a class invariant, and is tied to object
lifetime

RAII Idiom consists in three steps:

• Encapsulate a resource into a class (constructor)
• Use the resource via a local instance of the class
• The resource is automatically released when the object gets out of scope

(destructor)

Implication 1: C++ programming language does not require the garbage collector!!

Implication 2 :The programmer has the responsibility to manage the resources

7/68

struct/class Declaration and Definition

struct declaration and definition
struct A; // struct declaration

struct A { // struct definition
int x; // data member
void f(); // function member

};

class declaration and definition

class A; // class declaration

class A { // class definition
int x; // data member
void f(); // function member

};
8/68

struct/class Function Declaration and Definition

struct A {
void g(); // function member declaration

void f() { // function member declaration
cout << "f"; // inline definition

}
};

void A::g() { // function member definition
cout << "g"; // out-of-line definition

}

9/68

struct/class Members

struct B {
void g() { cout << "g"; } // function member

};

struct A {
int x; // data member
B b; // data member
void f() { cout << "f"; } // function member

};

A a;
a.x;
a.f();
a.b.g();

10/68

Class Hierarchy

Class Hierarchy 1/3

Child/Derived Class or Subclass
A new class that inheriting variables and functions from another class is called a
derived or child class

Parent/Base Class
The closest class providing variables and functions of a derived class is called parent
or base class

Extend a base class refers to creating a new class which retains characteristics of the
base class and on top it can add (and never remove) its own members

Syntax:
class DerivedClass : [<inheritance attribute>] BaseClass {

11/68

Class Hierarchy 2/3

struct A { // base class
int value = 3;

void g() {}
};

struct B : A { // B is a derived class of A (B extends A)
int data = 4; // B inherits from A

int f() { return data; }
};

A a;
B b;
a.value;
b.g();

12/68

Class Hierarchy 3/3

struct A {};
struct B : A {};

void f(A a) {} // copy
void g(B b) {} // copy

void f_ref(A& a) {} // the same for A*
void g_ref(B& b) {} // the same for B*

A a;
B b;
f(a); // ok, also f(b), f_ref(a), g_ref(b)
g(b); // ok, also g_ref(b), but not g(a), g_ref(a)

A a1 = b; // ok, also A& a2 = b
// B b1 = a; // compile error

13/68

Access specifiers

Access specifiers 1/2

The access specifiers define the visibility of inherited members of the subsequent base
class. The keywords public , private , and protected specify the sections of
visibility

The goal of the access specifiers is to prevent direct access to the internal
representation of the class for avoiding wrong usage and potential inconsistency
(access control)

• public: No restriction (function members, derived classes, outside the class)

• protected: Function members and derived classes access

• private: Function members only access (internal)

struct has default public members
class has default private members 14/68

Access specifiers 2/2
struct A1 {

int value; // public (by default)
protected:

void f1() {} // protected
private:

void f2() {} // private
};

class A2 {
int data; // private (by default)

};
struct B : A1 {

void h1() { f1(); } // ok, "f1" is visible in B
// void h2() { f2(); } // compile error "f2" is private in A1
};

A1 a;
a.value; // ok
// a.f1() // compile error protected
// a.f2() // compile error private 15/68

Inheritance Access Specifiers 1/3

The access specifiers are also used for defining how the visibility is propagated from
the base class to a specific derived class in the inheritance

Member
declaration Inheritance Derived classes

public
public

public
protected → → protected
private \

public
protected

protected
protected → → protected
private \

public
private

private
protected → → private
private \

struct has default public members
class has default private members

16/68

Inheritance Access Specifiers 2/3

struct A {
int var1; // public

protected:
int var2; // protected

};

struct B : protected A {
int var3; // public

};

B b;
// b.var1; // compile error, var1 is protected in B
// b.var2; // compile error, var2 is protected in B
b.var3; // ok, var3 is public in B

17/68

Inheritance Access Specifiers 3/3
class A {
public:

int var1;
protected:

int var2;
};

class B1 : A {}; // private inheritance

class B2 : public A {}; // public inheritance

B1 b1;
// b1.var1; // compile error, var1 is private in B1
// b1.var2; // compile error, var2 is private in B1

B2 b2;
b2.var1; // ok, var1 is public in B2
// b2.var2; // compile error, var2 is protected in B2

18/68

When Use public/protected/private/ for Data Members?

When use protected/private data members:

• They are not part of the interface, namely the logical state of the object (not
useful for the user)

• They must preserve the const correctness (e.g. for pointer), see Advanced
Concepts I

When use public data members:

• They can potentially change any time
• const correctness is preserved for values and references, as opposite to pointers.

Data members should be preferred to member functions in this case

19/68

Class Constructor

Class Constructor

Constructor [ctor]
A constructor is a special member function of a class that is executed when a new
instance of that class is created
Goals: initialization and resource acquisition
Syntax: T(...) same named of the class and no return type

• A constructor is supposed to initialize all data members

• We can define multiple constructors with different signatures

• Any constructor can be constexpr

20/68

Default Constructor

Default Constructor

The default constructor T() is a constructor with no argument

Every class has always either an implicit, explicit, or deleted default constructor

struct A {
A() {} // explicit default constructor
A(int) {} // user-defined (non-default) constructor

};struct A {
int x = 3; // implicit default constructor

};
A a{}; // call the default constructor, equivalent to: A a;

Note: an implicit default constructor is constexpr

21/68

Default Constructor Examples

struct A {
A() { cout << "A"; } // default constructor

};

A a1; // call the default constructor
// A a2(); // interpreted as a function declaration!!
A a3{}; // ok, call the default constructor

// direct-list initialization (C++11)

A array[3]; // print "AAA"

A* ptr = new A[4]; // print "AAAA"

22/68

Deleted Default Constructor 1/2

The implicit default constructor of a class is marked as deleted if (simplified):

• It has any user-defined constructor
struct A {

A(int x) {}
};
// A a; // compile error

• It has a non-static member/base class of reference/const type
struct NoDefault { // deleted default constructor

int& x;
const int y;

};

23/68

Deleted Default Constructor 2/2

• It has a non-static member/base class which has a deleted (or inaccessible)
default constructor
struct A {

NoDefault var; // deleted default constructor
};
struct B : NoDefault {}; // deleted default constructor

• It has a non-static member/base class with a deleted or inaccessible destructor

struct A {
private:

∼A() {}
};

24/68

Initializer List

The Initializer list is used for initializing the data members of a class or explicitly call
the base class constructor before entering the constructor body
(Not to be confused with std::initializer_list)

struct A {
int x, y;

A(int x1) : x(x1) {} // ": x(x1)" is the Initializer list
// direct initialization syntax

A(int x1, int y1) : // ": x{x1}, y{y1}"
x{x1}, // is the Initializer list
y{y1} {} // direct-list initialization syntax

}; // (C++11)

25/68

In-Class Member Initializer

C++11 In-class non-static data members initialization (NSDMI) allows initializing
the data members where they are declared. A user-defined constructor can be used to
override their default values

struct A {
int x = 0; // in-class member initializer
const char* str = nullptr; // in-class member initializer

A() {} // "x" and "str" are well-defined if
// the default constructor is called

A(const char* str1) : str{str1} {}
};

26/68

const and reference Member Initialization

const and reference data members must be initialized by using the initialization list
or by using in-class brace-or-equal-initializer syntax (C++11)

struct A {
int x;
const char y; // must be initialized
int& z; // must be initialized

int& v = x; // equal-initializer (C++11)
const int w{4}; // brace initializer (C++11)

A() : x(3), y('a'), z(x) {}
};

27/68

Initialization Order

Class member initialization follows the order of declarations and not the order in the
initialization list

struct ArrayWrapper {
int* array;
int size;

ArrayWrapper(int user_size) :
size{user_size},
array{new int[size]} {}
// wrong!!: "size" is still undefined

};

ArrayWrapper a(10);
cout << a.array[4]; // segmentation fault

28/68

Uniform Initialization for Objects

Uniform Initialization (C++11)
Uniform Initialization {}, also called list-initialization, is a way to fully initialize any
object independently of its data type

• Minimizing Redundant Typenames
- In function arguments
- In function returns

• Solving the “Most Vexing Parse" problem
- Constructor interpreted as function prototype

mbevin.wordpress.com/2012/11/16/uniform-initialization 29/68

http://mbevin.wordpress.com/2012/11/16/uniform-initialization/

Minimizing Redundant Typenames

struct Point {
int x, y;
Point(int x1, int y1) : x(x1), y(y1) {}

};

C++03 Point add(Point a, Point b) {
return Point(a.x + b.x, a.y + b.y);

}
Point c = add(Point(1, 2), Point(3, 4));

C++11
Point add(Point a, Point b) {

return { a.x + b.x, a.y + b.y }; // here
}
auto c = add({1, 2}, {3, 4}); // here

30/68

“Most Vexing Parse" problem 1/2

struct A {
A(int) {}

};

struct B {
// A a(1); // compile error It works in a function scope

A a{2}; // ok, call the constructor
};

31/68

“Most Vexing Parse" problem ⋆ 2/2

struct A {};

struct B {
B(A a) {}
void f() {}

};

B b(A()); // "b" is interpreted as function declaration
// with a single argument A (*)() (func. pointer)

// b.f() // compile error "Most Vexing Parse" problem
// solved with B b{ A{} };

32/68

Constructors and Inheritance

Class constructors are never inherited
A Derived class must call implicitly or explicitly a Base constructor before the current
class constructor
Class constructors are called in order from the top Base class to the most
Derived class (C++ objects are constructed like onions)
struct A {

A() { cout << "A"; };
};
struct B1 : A { // call "A()" implicitly

int y = 3; // then, "y = 3"
};
struct B2 : A { // call "A()" explicitly

B2() : A() { cout << "B"; }
};
B1 b1; // print "A"
B2 b2; // print "A", then print "B"

33/68

Delegate Constructor

The problem:
Most constructors usually perform identical initialization steps before executing
individual operations

C++11 A delegate constructor calls another constructor of the same class to reduce
the repetitive code by adding a function that does all the initialization steps
struct A {

int a;
float b;
bool c;
// standard constructor:
A(int a1, float b1, bool c1) : a(a1), b(b1), c(c1) {

// do a lot of work
}

A(int a1, float b1) : A(a1, b1, false) {} // delegate construtor
A(float b1) : A(100, b1, false) {} // delegate construtor

}; 34/68

explicit Keyword 1/2

explicit

The explicit keyword specifies that a constructor or conversion operator (C++11)
does not allow implicit conversions or copy-initialization from single arguments or
braced initializers

The problem:
struct MyString {

MyString(int n); // (1) allocates n bytes for the string
MyString(const char *p); // (2) initializes starting from a raw string

};
MyString string = 'a'; // calls (1), implicit conversion!!

explicit cannot be applied to copy/move-constructors

Most C++ constructors should be explicit
35/68

https://quuxplusone.github.io/blog/2023/04/08/most-ctors-should-be-explicit/

explicit Keyword 2/2

struct A {
A() {}
A(int) {}
A(int, int) {}

};
void f(const A&) {}

A a1 = {}; // ok
A a2(2); // ok
A a3 = 1; // ok (implicit)
A a4{4, 5}; // ok. Selected A(int, int)
A a5 = {4, 5}; // ok. Selected A(int, int)
f({}); // ok
f(1); // ok
f({1}); // ok

struct B {
explicit B() {}
explicit B(int) {}
explicit B(int, int) {}

};
void f(const B&) {}

// B b1 = {}; // error implicit conversion
B b2(2); // ok
// B b3 = 1; // error implicit conversion
B b4{4, 5}; // ok. Selected B(int, int)
// B b5 = {4, 5}; // error implicit conversion
B b6 = (B) 1; // OK: explicit cast
// f({}); // error implicit conversion
// f(1); // error implicit conversion
// f({1}); // error implicit conversion
f(B{1}); // ok 36/68

Copy Constructor

Copy Constructor

Copy Constructor

A copy constructor T(const T&) creates a new object as a deep copy of an
existing object

struct A {
A() {} // default constructor
A(int) {} // non-default constructor
A(const A&) {} // copy constructor → direct initialization

}

37/68

Copy Constructor Details

• Every class always defines an implicit or explicit copy constructor, potentially
deleted

• The copy constructor implicitly calls the default Base class constructor
• Even the copy constructor is considered a user-defined constructor
• The copy constructor doesn’t have template parameters, otherwise it is a standard

member function
• The copy constructor must not be confused with the assignment operator

operator=

MyStruct x;
MyStruct y{x}; // copy constructor
y = x; // call the assignment operator=, not the copy constructor

// → copy initialization, see next lecture
38/68

Copy Constructor Example

struct Array {
int size;
int* array;

Array(int size1) : size{size1} {
array = new int[size];

}
// copy constructor, ": size{obj.size}" initializer list
Array(const Array& obj) : size{obj.size} {

array = new int[size];
for (int i = 0; i < size; i++)

array[i] = obj.array[i];
}

};
Array x{100}; // do something with x.array ...
Array y{x}; // call "Array::Array(const Array&)"

39/68

Copy Constructor Usage

The copy constructor is used to:

• Initialize one object from another one having the same type
- Direct constructor
- Assignment operator

A a1;
A a2(a1); // Direct copy initialization
A a3{a1}; // Direct copy initialization
A a4 = a1; // Copy initialization
A a5 = {a1}; // Copy list initialization

• Copy an object which is passed by-value as input parameter of a function
void f(A a);

• Copy an object which is returned as result from a function***
A f() { return A(3); } // *** without RVO optimization

// (see 'Advanced Concepts I' lecture) 40/68

Copy Constructor Usage Examples

struct A {
A() {}
A(const A& obj) { cout << "copy"; }

};

void f(A a) {} // pass by-value

A g1(A& a) { return a; }

A g2() { return A(); }

A a;
A b = a; // copy constructor (assignment) "copy"
A c(b); // copy constructor (direct) "copy"
f(b); // copy constructor (argument) "copy"
g1(a); // copy constructor (return value) "copy"
A d = g2(); // * see RVO optimization (Advanced Concepts I) 41/68

Pass by-value and Copy Constructor

struct A {
A() {}
A(const A& obj) { cout << "expensive copy"; }

};

struct B : A {
B() {}
B(const B& obj) { cout << "cheap copy"; }

};

void f1(B b) {}
void f2(A a) {}

B b1;
f1(b1); // cheap copy
f2(b1); // expensive copy!! It calls A(const A&) implicitly

42/68

Deleted Copy Constructor ⇝ 1/3

The implicit copy constructor of a class is marked as deleted if:

• The class has the move constructor (next lectures)
struct A {

A(A&&) {}; // 'A' implicit copy constructor is deleted
};

• The class has a deleted copy assignment operator
struct A {

A& operator=(const A&) = delete; // 'A' implicit copy constructor is deleted
};

43/68

Deleted Copy Constructor ⇝ 2/3

• It has a non-static member/base class with a deleted (or inaccessible) copy
constructor
include <memory> // std::unique_ptr
struct A {

A(const A&) = delete; // explicitly deleted
};
struct B {

std::unique_ptr<int> ptr; // unique_ptr is non-copyable
}; // 'B' implicit copy constructor is deleted
class C {

C(const C&) {} // copy constructor is private
};
struct D1 : A {}; // 'D1' implicit copy constructor is deleted
struct D2 : C {}; // 'D2' implicit copy constructor is deleted

struct E {
A a;

}; // 'E' implicit copy constructor is deleted 44/68

Deleted Copy Constructor⇝ 3/3

• It has a non-static member/base class with a deleted (or inaccessible) destructor
struct A {

∼A() = delete; // explicitly deleted
};
class B {

∼B() {} // destructor is private
};

struct C1 : A {}; // 'C1' implicit copy constructor is deleted
struct C2 : B {}; // 'C2' implicit copy constructor is deleted

struct D {
A a;

}; // 'D' implicit copy constructor is deleted

45/68

Class Destructor

Class Destructor 1/3

Destructor [dtor]
A destructor is a special member function that is executed whenever an object is
out-of-scope or whenever the delete/delete[] expression is applied to a pointer
of that class
Goals: resources releasing
Syntax: ∼T() same name of the class and no return type

• Any object has exactly one destructor, which is always implicitly or explicitly
declared

• C++20 The destructor can be constexpr

46/68

Class Destructor 2/3

struct Array {
int* array;

Array() { // constructor
array = new int[10];

}

∼Array() { // destructor
delete[] array;

}
};
int main() {

Array a; // call the constructor
for (int i = 0; i < 5; i++)

Array b; // call 5 times the constructor + destructor
} // call the destructor of "a"

47/68

Class Destructor - Order of Calls 3/3

Class destructor is never inherited. Base class destructor is invoked after the
current class destructor

Class destructors are called in reverse order. From the most Derived to the top
Base class
struct A {

∼A() { cout << "A"; }
};
struct B {

∼B() { cout << "B"; }
};
struct C : A {

B b; // call ∼B()
∼C() { cout << "C"; }

};
int main() {

C b; // print "C", then "B", then "A"
}

48/68

Defaulted
Constructors,
Destructor, and
Operators
(=default)

Defaulted Constructors, Destructor, and Operators (=default)

Starting from C++11, the compiler can automatically generate

• default/copy/move constructors
A() = default
A(const A&) = default
A(A&&) = default

• destructor
∼A() = default

• copy/move assignment operators
A& operator=(const A&) = default
A& operator=(A&&) = default

• spaceship operator C++20
auto operator<=>(const A&) const = default 49/68

Compiler-generated Function Purposes

Defaulted functions are useful for the following purposes:

• Reduce verbosity and repetitive code

• Express the class semantic (idiomatic)

• Change function visibility (public , protected , private)

• Override implicit-deleted function rules

• Add specifiers: noexcept , explicit

Note 1: = default implies constexpr , but not noexcept or explicit

Note 2: the compiler automatically adds noexcept to defaulted methods if all data
members and base classes have the same property

50/68

Compiler-generated Function Semantic

Compiler-generated functions apply their semantics “recursively” on the class data
members.

For example, a defaulted default constructor (MyClass()) initializes class data
members with their default values

struct A {
int x = 1;
int y;

A() = default;
};

A a; // x = 1, y is undefined

51/68

Examples

struct A {
A(int v1) {} // delete implicitly-defined default ctor because

// a user-provided constructor is defined

A() = default; // now, A has the default constructor
};

struct B {
protected:

B() = default; // now it is protected
};struct C {

int x;
// C() {} // 'x' is undefined

C() = default; // 'x' is zero
};

52/68

Class Keywords

this Keyword

this

Every object has access to its own address through the pointer this

Explicit usage is not mandatory (and not suggested)
this is necessary when:
• The name of a local variable is equal to some member name
• Return reference to the calling object

struct A {
int x;
void f(int x) {

this->x = x; // without "this" has no effect
}
const A& g() {

return *this;
}

}; 53/68

static Keyword 1/5

static Keyword
The keyword static declares members (fields or methods) that are not bound to
class instances. A static member is shared by all objects of the class

struct A {
int x;

int f() { return x; }

static int g() { return 3; } // g() cannot access 'x' as it is associated
}; // with class instances
A a{4};
a.f(); // call the class instance method
A::g(); // call the static class method
a.g(); // as an alternative, a class instance can access static class members

54/68

static Keyword - Constant Members 2/5

struct A {
static const int a = 4; // C++03
static constexpr float b = 4.2f; // better, C++11

// static const float c = 4.2f; // only GNU extension (GCC)

static constexpr int f() { return 1; } // ok, C++11
// static const int g() { return 1; } // 'const' refers to the return type
};

55/68

static Keyword - Mutable Members 3/5

Non- const static data members cannot be directly initialized “inline" before
C++17 (see also Translation Units I lecture)

struct A {
// static int a = 4; // compiler error

static int a; // ok, declaration only
static inline int b = 4; // ok from C++17

static int f() { return 2; }
static int g(); // ok, declaration only

};

int A::a = 4; // ok
int A::g() { return 3; } // ok
// NOTE: link error (undefined reference) without the two previous definitions

56/68

static Keyword - Example 4/5

struct A {
static int x; // declaration

static int f() { return x; }

static int& g() { return x; }
};
int A::x = 3; // definition

//---

A::f(); // return 3
A::x++;
A::f(); // return 4
A::g() = 7;
A::f(); // return 7

57/68

static Keyword - Member Visibility 5/5

• A static member function can only access static class members
• A non- static member function can access static class members

struct A {
int x = 3;
static inline int y = 4;

int f1() { return x; } // ok
// static int f2() { return x; } // compiler error, 'x' is not visible

int g1() { return y; } // ok
static int g2() { return y; } // ok

struct B {
int h() { return y + g2(); } // ok

}; // 'x', 'f1()', 'g1()' are not visible within 'B'
}; 58/68

const Keyword 1/3

Const member functions
Const member functions (inspectors or observers) are functions marked with
const that are not allowed to change the object logical state

The compiler prevents from inadvertently mutating/changing the data members of
observer functions → All data members are marked const within an observer
method, including the this pointer

• The physical state can still be modified, see mutable member functions ⇝
• Member functions without a const suffix are called non-const member functions

or mutators/modifiers

59/68

const Keyword 2/3

struct A {
int x = 3;
int* p;

int get() const {
// x = 2; // compile error class variables cannot be modified
// p = nullptr; // compile error class variables cannot be modified

p[0] = 3; // ok, p is 'int* const' -> its content is
// not protected

return x;
}

};

A common case where const member functions are useful is to enforce const correctness when
accessing pointers, see Advanced Concepts I, Const Correctness

60/68

const Keyword - const Overloading 3/3

The const keyword is part of the function signature. Therefore, a class can
implement two similar methods, one which is called when the object is const , and
one that is not
class A {

int x = 3;
public:

int& get1() { return x; } // read and write
int get1() const { return x; } // read only
int& get2() { return x; } // read and write

};

A a1;
cout << a1.get1(); // ok
cout << a1.get2(); // ok
a1.get1() = 4; // ok
const A a2;
cout << a2.get1(); // ok
// cout << a2.get2(); // compile error "a2" is const
//a2.get1() = 5; // compile error only "get1() const" is available

61/68

mutable Keyword

mutable
mutable data members of const class instances are modifiable. They should be
part of the object physical state, but not of the logical state

• It is particularly useful if most of the members should be constant but a few need to be
modified

• Conceptually, mutable members should not change anything that can be retrieved from
the class interface

struct A {
int x = 3;
mutable int y = 5;

};
const A a;
// a.x = 3; // compiler error const
a.y = 5; // ok 62/68

using Keyword for type declaration

The using keyword is used to declare a type alias tied to a specific class

struct A {
using type = int;

};

typename A::type x = 3; // "typename" keyword is needed when we refer to types

struct B : A {};

typename B::type x = 4; // B can use "type" as it is public in A

63/68

using Keyword for Inheritance

The using keyword can be also used to change the inheritance attribute of data
members and functions

struct A {
protected:

int x = 3;
};

struct B : A {
public:

using A::x;
};

B b;
b.x = 3; // ok, "b.x" is public

64/68

friend Keyword 1/3

friend Class
A friend class can access the private and protected members of the class in
which it is declared as a friend

Friendship properties:

• Not Symmetric: if class A is a friend of class B, class B is not automatically a
friend of class A

• Not Transitive: if class A is a friend of class B, and class B is a friend of class C,
class A is not automatically a friend of class C

• Not Inherited: if class Base is a friend of class X, subclass Derived is not
automatically a friend of class X; and if class X is a friend of class Base, class X is
not automatically a friend of subclass Derived

65/68

friend Keyword 2/3

class B; // class declaration

class A {
friend class B;
int x; // private

};

class B {
int f(A a) { return a.x; } // ok, B is friend of A

};

class C : B {
// int f(A a) { return a.x; } // compile error not inherited
};

66/68

friend Keyword 3/3

friend Method
A non-member function can access the private and protected members of a class
if it is declared a friend of that class

class A {
int x = 3; // private

friend int f(A a); // friendship declaration, no implementation
};

//'f' is not a member function of any class
int f(A a) {

return a.x; // A is friend of f(A)
}

friend methods are commonly used for implementing the stream operator operator« 67/68

delete Keyword

delete Keyword (C++11)
The delete keyword explicitly marks a member function as deleted and any use
results in a compiler error. When it is applied to copy/move constructor or
assignment, it prevents the compiler from implicitly generating these functions

The default copy/move functions for a class can produce unexpected results. The
keyword delete prevents these errors

struct A {
A() = default;
A(const A&) = delete; // e.g. deleted because unsafe or expensive

};
void f(A a) {} // implicit call to copy constructor

A a;
// f(a); // compile error marked as deleted 68/68

	C++ Classes
	RAII Idiom

	Class Hierarchy
	Access specifiers
	Inheritance Access Specifiers
	When Use public/protected/private/ for Data Members?

	Class Constructor
	Default Constructor
	Class Initialization
	Uniform Initialization for Objects
	Delegate Constructor
	explicit Keyword

	Copy Constructor
	Class Destructor
	Defaulted Constructors, Destructor, and Operators (=default)
	Class Keywords
	this
	static
	const
	mutable
	using
	friend
	delete

