
Modern C++
Programming

8. Basic Concepts VI
Functions and Preprocessing

Federico Busato
2026-01-06



Table of Contents

1 Functions
Pass by-Value

Pass by-Pointer

Pass by-Reference

Function Signature and Overloading

Overloading and =delete

Default Parameters

1/66



Table of Contents

2 Function Pointers and Function Objects
Function Pointer

Function Object (or Functor)

2/66



Table of Contents

3 Lambda Expressions
Capture List

Lambda Expression and Function Relation

Parameter Notes

Composability

Recursion

constexpr/consteval

template

mutable

Capture List and Classes
3/66



Table of Contents

4 Preprocessing
Preprocessors

Common Errors

Source Location Macros

Condition Compiling Macros

Stringizing Operator #

#error and #warning

#pragma

Token-Pasting Operator ## ⋆

Variadic Macro ⋆

4/66



Functions



Overview

A function (procedure or routine) is a piece of code that performs a specific
task

Purpose:

• Avoiding code duplication: less code for the same functionality → less
bugs

• Readability: better express what the code does

• Organization: break the code in separate modules

5/66



Function Parameter and Argument

Function Parameter [formal]
A parameter is the variable which is part of the method signature

Function Argument [actual]
An argument is the actual value (instance) of the variable that gets passed to the
function

void f(int a, char* b); // parameters: int a, char* b
// return type: void

f(3, "abc"); // arguments: 3, "abc"

6/66



Pass by-Value

Call-by-value
The object is copied and assigned to input arguments of the method f(T x)

Advantages:
• Changes made to the parameter inside the function have no effect on the argument

Disadvantages:
• Performance penalty if the copied arguments are large (e.g. a structure with several data

members)

When to use:
• Built-in data type and small objects (≤ 8 bytes)

When not to use:
• Fixed size arrays which decay into pointers
• Large objects 7/66



Pass by-Pointer

Call-by-pointer
The address of a variable is copied and assigned to input arguments of the method
f(T* x)

Advantages:
• Allows a function to change the value of the argument
• The argument is not copied (fast)

Disadvantages:
• The argument may be a null pointer
• Dereferencing a pointer is slower than accessing a value directly

When to use:
• Raw arrays (use const T* if read-only)

When not to use:
• All other cases

8/66



Pass by-Reference

Call-by-reference
The reference of a variable is copied and assigned to input arguments of the method
f(T& x)

Advantages:
• Allows a function to change the value of the argument (better readability compared with

pointers)
• The argument is not copied (fast)
• References must be initialized (no null pointer)
• Avoid implicit conversion (without const T& )

When to use:
• All cases except raw pointers

When not to use:
• Pass by-value could give performance advantages and improve the readability with built-in

data type and small objects that are trivially copyable
9/66



Examples

struct MyStruct;

void f1(int a); // pass by-value
void f2(int& a); // pass by-reference
void f3(const int& a); // pass by-const reference
void f4(MyStruct& a); // pass by-reference

void f5(int* a); // pass by-pointer
void f6(const int* a); // pass by-const pointer
void f7(MyStruct* a); // pass by-pointer

void f8(int*& a); // pass a pointer by-reference
//--------------------------------------------------------------
char c = 'a';
f1(c); // ok, pass by-value (implicit conversion)
// f2(c); // compile error different types
f3(c); // ok, pass by-value (implicit conversion) 10/66



Function Signature and Overloading 1/2

Signature
Function signature defines the input types for a (specialized) function and the
inputs + outputs types for a template function
A function signature includes the number of arguments, the types of arguments, and
the order of the arguments

• The C++ standard prohibits a function declaration that only differs in the return
type

• Function declarations with different signatures can have distinct return types

Overloading
Function overloading allows having distinct functions with the same name but with
different signatures

11/66



Function Signature and Overloading 2/2

void f(int a, char* b); // signature: (int, char*)

// char f(int a, char* b); // compile error same signature
// but different return types

void f(const int a, char* b); // same signature, ok
// const int == int

void f(int a, const char* b); // overloading with signature: (int, const char*)

int f(float); // overloading with signature: (float)
// the return type is different

GCC 14 adds the flag -fdiagnostics-all-candidates to show all function candidates when
overload resolution failure occurs

New C++ features in GCC 14
12/66

https://developers.redhat.com/articles/2024/05/15/new-c-features-gcc-14#new_and_improved_warnings


Overloading Resolution Rules

• An exact match

• A promotion (e.g. char to int )

• A standard type conversion (e.g. float and int )

• A constructor or user-defined type conversion ⇝

void f(int a);
void f(float b); // overload
void f(float b, char c); // overload
//--------------------------------------------------------------

f(0); // exact match
f('a'); // promotion from char to int (promotion)

// f(3LL); // compile error ambiguous match
f(2.3f); // exact match

// f(2.3); // compile error ambiguous match
f(2.3, 'a'); // standard type conversion, ambiguity is not possible here 13/66



Overloading and =delete

=delete can be used to prevent calling the wrong overload

void g(int) {}

void g(double) = delete;

g(3); // ok
g(3.0); // compile error# include <cstddef> // std::nullptr_t

void f(int*) {}

void f(std::nullptr_t) = delete;

f(nullptr); // compile error

14/66



Function Default Parameters

Default/Optional parameter
A default parameter is a function parameter that has a default value

• If the user does not supply a value for this parameter, the default value will be used

• All default parameters must be the rightmost parameters

• Default parameters must be declared only once

• Default parameters can improve compile time and avoid redundant code because they
avoid defining other overloaded functions

void f(int a, int b = 20); // declaration

//void f(int a, int b = 10) { ... } // compile error, already set in the declaration

void f(int a, int b) { ... } // definition, default value of "b" is already set

f(5); // b is 20
15/66



Function Pointers
and Function
Objects



Function Pointer - Function as Argument 1/2

Standard C achieves generic programming capabilities and composability through the
concept of function pointer

A function can be passed as a pointer to another function and behaves as an “indirect
call”

# include <stdlib.h> // qsort

int descending(const void* a, const void* b) {
return *((const int*) a) > *((const int*) b);

}

int array[] = {7, 2, 5, 1};
qsort(array, 4, sizeof(int), descending);
// array: { 7, 5, 2, 1 }

16/66



Function Pointer - Function as Argument 2/2

int eval(int a, int b, int (*f)(int, int)) {
return f(a, b);

}
// type: int (*)(int, int)
int add(int a, int b) { return a + b; }
int sub(int a, int b) { return a - b; }

cout << eval(4, 3, add); // print 7
cout << eval(4, 3, sub); // print 1

Problems:

Safety There is no check of the argument type in the generic case (e.g. qsort )
Performance Any operation requires an indirect call to the original function. Function

inlining is not possible
17/66



Function Object (or Functor) 1/2

Function Object
A function object, or functor, is a callable object that can be treated as a
parameter

C++ provides a more efficient and convenient way to pass “procedure” to other
functions called function object

# include <algorithm> // for std::sort

struct Descending { // <-- function object
bool operator()(int a, int b) { // function call operator

return a > b;
}

};
int array[] = {7, 2, 5, 1};
std::sort(array, array + 4, Descending{});
// array: { 7, 5, 2, 1 } 18/66



Function Object (or Functor) 2/2

Advantages:

Safety Argument type checking is always possible. It could involve templates
Performance The compiler injects operator() in the code of the destination function

and then compile the routine. Operator inlining is the standard behavior

C++11 simplifies the concept by providing less verbose function objects called
lambda expressions

19/66



Lambda Expressions



Lambda Expression

Lambda Expression
A C++11 lambda expression is an inline local-scope function object

auto x = [capture clause] (parameters) { body }

The expression to the right of = is the lambda expression.
The runtime object x created by that expression is the closure
auto descending = [](int a, int b) { return a > b; };

// equivalent to (simplified)
struct Descending {

bool operator()(int a, int b) { return a > b; }
};
Descending descending;

20/66



Lambda Expression

auto x = [capture clause] -> <type> { body }

[capture clause] defines how the local scope arguments are captured (by-value,
by-reference, etc.)

parameters are normal function parameters (optional in C++23*)

body is a normal function body (function call operator)

-> <type> trailing return type (optional)

Additionally, lambda expressions support template and concepts in C++20 and
function attributes in C++23

* some compilers support lambda expressions without parameters in previous C++ standards 21/66



Lambda Expression Examples

# include <algorithm> // for std::sort

int array[] = {7, 2, 5, 1};
auto lambda = [](int a, int b){ return a > b; }; // named lambda

std::sort(array, array + 4, lambda);
// array: { 7, 5, 2, 1 }

// in alternative, in one line of code: // unnamed lambda
std::sort(array, array + 4, [](int a, int b){ return a > b; });
// array: { 7, 5, 2, 1 }

auto lambda2 = []{ return 3; }; // no parameters, C++23

auto lambda3 = [] static { return 3; }; // static function call operator, C++23

22/66



Capture List

Lambda expressions capture external variables used in the body of the lambda in two
ways:

• Capture by-value
• Capture by-reference (can modify external variable values)

Capture list can be passed as follows

• [] no capture

• [=] captures all variables by-value

• [&] captures all variables by-reference

• [var1] captures only var1 by-value

• [&var2] captures only var2 by-reference

• [var1, &var2] captures var1 by-value and var2 by-reference 23/66



Capture List Examples

// GOAL: find the first element greater than "limit"
# include <algorithm> // for std::find_if
int limit = ...

auto lambda1 = [=](int value) { return value > limit; }; // by-value
auto lambda2 = [&](int value) { return value > limit; }; // by-reference
auto lambda3 = [limit](int value) { return value > limit; }; // "limit" by-value
auto lambda4 = [&limit](int value) { return value > limit; }; // "limit" by-reference
// auto lambda5 = [](int value) { return value > limit; }; // no capture

// compile error
int array[] = {7, 2, 5, 1};
std::find_if(array, array + 4, lambda1);

24/66



Capture List - Other Cases

• [=, &var1] captures all variables used in the body of the lambda by-value, except
var1 that is captured by-reference

• [&, var1] captures all variables used in the body of the lambda by-reference, except
var1 that is captured by-value

• [new_var = var1] , [&new_var = var1] introduce a new value or reference
new_var initialized by var1 C++14

• A lambda expression can read a variable without capturing it if the variable is constexpr

constexpr int limit = 5;
int var1 = 3, var2 = 4;

auto lambda1 = [](int value){ return value > limit; };

auto lambda2 = [=, &var2]() { return var1 > var2; }; 25/66



Lambda Behind the Hood

The following code
int a;
float b;
auto lambda = [a, &b](int v) {return 4;};

is roughly equivalent to
struct /*unnamed*/ {

int a; // private
float& b; // private

inline /*constexpr*/ int operator()(int v) const {
return 4;

}
} lambda;

26/66



Lambda Expression and Function Relation

A lambda expression can be converted to a function (stateless) if its capture list is
empty

// lambda_func is equivalent to
// int lambda_func(int first, int second){ return first + second; };

void f(int (lambda_func)(int, int)) {
cout << lambda_func(2, 3);

}

auto lambda = [](int first, int second){ return first + second; };
f(lambda); // print 5

27/66



Parameter Notes

C++14 Lambda expression parameters can be automatically deduced

auto x = [](auto value) { return value + 4; };

C++14 Lambda expression parameters can be initialized

auto x = [](int i = 6) { return i + 4; };

28/66



Composability 1/2

Lambda expressions can be composed

auto lambda1 = [](int value){ return value + 4; };
auto lambda2 = [](int value){ return value * 2; };

auto lambda3 = [&](int value){ return lambda2(lambda1(value)); };
// returns (value + 4) * 2

A function can return a lambda
(dynamic dispatch is also possible if the capture list is empty)

auto f() {
return [](int value){ return value + 4; };

}
auto lambda = f();
cout << lambda(2); // print "6"

29/66



Composability 2/2

A lambda expression can contain another lambda expression

auto lambda1 = [](auto value) {
int x = 5;
auto lambda2 = [=](auto v) { return x * value + v; };
return lambda2(3);

};
cout << lambda1(2); // print "13"

30/66



Recursion ⋆

Lambda expressions can be called recursively

auto factorial = [](int n, auto fac) {
return (n <= 1) ? 1 : n * fac(n - 1, fac);

};
factorial(5, factorial);

C++23 allows to access the this pointer of a lambda object with the syntax
this auto as first parameter

auto factorial = [](this auto self, int n) -> int { // or 'this auto&&'
return (n <= 1) ? 1 : n * self(n - 1);

};
factiorial(5);

31/66



constexpr/consteval Lambda Expression

C++17 Lambda expressions are implicitly constexpr (if they satisfy the
requirements of a constexpr function). Lambda expressions can be also explicitly
marked constexpr

C++20 Lambda expressions support consteval

auto factorial = [](int value) constexpr {
int ret = 1;
for (int i = 2; i <= value; i++)

ret *= i;
return ret;

};
auto mul = [](int v) consteval { return v * 2; };
auto add = [](int x) { return x + 3; };

constexpr int v1 = factorial(4) + mul(5) + add(3); // '24' + '10' + '5' 32/66



template Lambda Expression ⇝ 1/2

C++20 Lambda expression supports template and requires clause

auto lambda = []<typename T>(T value)
requires std::is_arithmetic_v<T> {

return value * 2;
};
auto v = lambda(3.4); // v: 6.8 (double)
// lambda(nullptr); // compiler error

33/66



template Lambda Expression ⇝ 2/2

Before C++20, template arguments can be emulated with auto + decltype

auto lambda = [](auto value) {
using T = decltyle(value); // T: double

};
lambda(3.4);

Lambda and template without automatic deduction needs the full syntax

auto lambda = []<typename T>(int value) {
return value * sizeof(T);

};

// lambda<double>(3); // compiler error
lambda.operator()<double>(3); // ok

34/66



mutable Lambda Expression ⋆

Lambda capture is by-const-value

mutable specifier allows the lambda to modify the parameters captured by-value

int var = 1;

auto lambda1 = [&](){ var = 4; }; // ok
lambda1();
cout << var; // print '4'

// auto lambda2 = [=](){ var = 3; }; // compile error
// lambda operator() is const

auto lambda3 = [=]() mutable { var = 3; }; // ok
lambda3();
cout << var; // print '4', lambda3 captures by-value 35/66



Capture List and Classes ⇝

• [this] captures the current object (*this) by-reference (implicit in C++17)
• [=] default capture of this pointer by value has been deprecated C++20
• [new_var = x] , [&new_var = x] introduce a new value or reference new_var

initialized by x C++14
class A {

int data = 1;

void f() {
int var = 2; // <-- local variable
auto lambda1 = [=]() { return var; }; // copy by-value, return 2
auto lambda2 = [=]() { int var = 3; return var; }; // return 3 (nearest scope)
auto lambda3 = [this]() { return data; }; // copy by-reference, return 1
auto lambda4 = [*this]() { return data; }; // copy by-value (C++17), return 1

// auto lambda5 = [data]() { return data; }; // compile error 'data' is not visible
auto lambda6 = [y = data]() { return y; }; // return 1

}
};

36/66



Preprocessing



Preprocessing and Macro

A preprocessor directive is any line preceded by a hash symbol (#) which tells the
compiler how to interpret the source code before compiling it

Macro are preprocessor directives which substitute any occurrence of an identifier in
the rest of the code by replacement

Macro are evil:
Do not use macro expansion!!
...or use as little as possible

• Macro cannot be directly debugged
• Macro expansions can have unexpected side effects
• Macro have no namespace or scope

37/66



Preprocessors

All statements starting with #

• #include "my_file.h"

Inject the code in the current file

• #define MACRO <expression>

Define a new macro

• #undef MACRO
Undefine a macro
(a macro should be undefined as early as possible for safety reasons)

Multi-line Preprocessing: \ at the end of the line
Indent: # define 38/66



Conditional Compiling

• # if <condition 1>
..code..

# elif <condition 2>
..code..

# else
..code..

# endif

• Check if a macro is defined
# if defined(MACRO) // equal to #ifdef MACRO
# elif defined(MACRO) // equal to #elifdef MACRO in C++23

• Check if a macro is NOT defined
# if !defined(MACRO) // equal to #ifndef MACRO
# elif !defined(MACRO) // equal to #elifdef MACRO in C++23

39/66



Common Error 1 - Assuming macros have file scope

A Define macros in header files and before includes!!
# include <iostream>
# define value // <- very dangerous!!
# include "big_lib.hpp"

int main() {
std::cout << add_3(4); // should print 7, but it always prints 3

}

big_lib.hpp:
int add_3(int value) { // 'value' disappears

return value + 3;
}

It is very hard to see this problem when the macro is in a header
40/66



Common Error 2 - Macro visibility 1/3

#if defined can introduce bugs related to macro visibility

# include "header1.hpp"
# include "header2.hpp"
// ... many other headers and/or big project ...

# if defined(ENABLE_DEBUG) // is ENABLE_DEBUG defined here?
int f(int v) { cout << v << endl; return v * 3; } // first path

# else
int f(int v) { return v * 3; } // second path

# endif

41/66



Common Error 2 - Macro visibility 2/3

Fixing the problem...the wrong way:

# if ENABLE_DEBUG // or #if ENABLE_DEBUG == 1
void f(int v) { cout << v << endl; return v * 3; } // first path

...

The second path is enabled when ENABLE_DEBUG defined to 0 and when the macro
is not defined, potentially not intentionally.
ENABLE_DEBUG is evaluated as 0 if it is NOT defined.

Furthermore, even the most common warning flags ( -Wall -Wextra -Wpedantic )
don’t raise the issue. The user needs to explicitly add -Wundef to detect the problem

42/66



Common Error 2 - Macro visibility 3/3

Solution: Function-like macros

# define ENABLE_DEBUG() 1
...
# if ENABLE_DEBUG() // compile error if it is not defined

Better Macros, Better Flags

43/66

https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/


Common Error 3 - Parenthesis

Forget to use parenthesis in macro definitions!!

# define SUB1(a, b) a - b // WRONG
# define SUB2(a, b) (a - b) // WRONG
# define SUB3(a, b) ((a) - (b)) // correct

cout << (5 * SUB1(2, 1)); // print 9 not 5!!
cout << SUB2(3 + 3, 2 + 2); // print 6 not 2!!
cout << SUB3(3 + 3, 2 + 2); // print 2

44/66



Common Error 4 - Assuming macros are like common code to debug

Macros make hard to find compile errors!!
1: # include <iostream>
2:
3: # define F(a) { \
4: ... \
5: ... \
6: return v;
7:
8: int main() {
9: F(3); // compile error at line 9!!

10: }

• In which line is the error??!*

*modern compilers are able to roll out the macro with -g3 flag
45/66



Common Error 5 - Arguments evaluation

Macro can introduce bugs related to the evaluation of their expressions!!
# if defined(DEBUG)
# define CHECK(EXPR) // do something with EXPR

void check(bool b) { /* do something with b */ }
# else
# define CHECK(EXPR) // do nothing

void check(bool) {} // do nothing
# endif
bool clear_system_error() { /* change program state;

return true if everything is fine */ }
check( clear_system_error() )
CHECK( clear_system_error() ) // <-- problem here

• What happens when DEBUG is not defined?
f() is not evaluated by using the macro

46/66



Common Error 6 - Multi-line macros

Forget curly brackets in multi-lines macros!!
# include <iostream>
# include <nuclear_explosion.hpp>

# define NUCLEAR_EXPLOSION \ // {
std::cout << "start nuclear explosion"; \
nuclear_explosion();

// }
int main() {

bool never_happen = false;
if (never_happen)

NUCLEAR_EXPLOSION
} // BOOM!! A

The second line is executed!!
47/66



Common Error 7 - Assuming macros have local scope

Macros do not have scope!!
# include <iostream>

void f() {
# define value 4
std::cout << value;

}
int main() {

f(); // 4
std::cout << value; // 4
# define value 3
f(); // 4
std::cout << value; // 3

}

* In general, compilers raise a warning for multiple definitions of the same macro
48/66



Common Error 8 - Assuming macros behave like functions

Macros can have side effect!!

# define MIN(a, b) ((a) < (b) ? (a) : (b))

int main() {
int array1[] = { 1, 5, 2 };
int array2[] = { 6, 3, 4 };
int i = 0;
int j = 0;
int v1 = MIN(array1[i++], array2[j++]); // v1 = 5!!
int v2 = MIN(array1[i++], array2[j++]); // undefined behavior/

} // segmentation fault A

arne-mertz.de/2019/03/macro-evil 49/66

https://arne-mertz.de/2019/03/macro-evil/


Common Error 9 - Undefined behavior

Macros can have undefined behavior themselves!!

# define MY_MACRO defined(EXTERNAL_MACRO)

# if MY_MACRO
# define MY_VALUE 1
# else
# define MY_VALUE 0
# endif

int x = MY_VALUE; // undefined behavior: 'defined' has a different meaning
// if outside a conditional preprocessioning directive, e.g. #if

50/66



When Preprocessors are Necessary

• Conditional compiling: different architectures, compiler features, etc.

• Mixing different languages: code generation (example: asm assembly)

• Complex name replacing: see template programming

Otherwise, prefer const and constexpr for constant values and functions

# define SIZE 3 // replaced with
const int SIZE = 3; // only C++11 at global scope

# define SUB(a, b) ((a) - (b)) // replaced with
constexpr int sub(int a, int b) {

return a - b;
}

Are We Macro free Yet, CppCon2019
51/66

https://github.com/CppCon/CppCon2019/blob/master/Presentations/are_we_macrofree_yet/are_we_macrofree_yet__zhihao_yuan__cppcon_2019.pdf


Source Location Macros 1/3

__LINE__ Integer value representing the current line in the source code file
being compiled

__FILE__ A string literal containing the name of the source file being
compiled

__FUNCTION__ (non-standard, gcc, clang) A string literal containing the name of
the function in the ‘macro scope’

__PRETTY_FUNCTION__ (non-standard, gcc, clang) A string literal containing the full
signature of the function in the ‘macro scope’

__func__ (C++11 keyword) A string containing the name of the function in
the ‘macro scope’

52/66



Source Location Macros 2/3

source.cpp:
# include <iostream>

void f(int p) {
std::cout << __FILE__ << ":" << __LINE__; // print 'source.cpp:4'
std::cout << __FUNCTION__; // print 'f'
std::cout << __func__; // print 'f'

}

// see template lectures
template<typename T>
float g(T p) {

std::cout << __PRETTY_FUNCTION__; // print 'float g(T) [T = int]'
return 0.0f;

}

void g1() { g(3); } 53/66



Source Location Macros 3/3

C++20 provides source location utilities for replacing macro-based approach

#include <source_location>

current() get source location info (static member)
line() source code line

column() line column
file_name() current file name

function_name() current function name

# include <source_location>

void f(std::source_location s = std::source_location::current()) {
cout << "function: " << s.function_name() << ", line " << s.line();

}
f(); // print: "function: f, line 6" 54/66



Condition Compiling Macros 1/2

Select code depending on the C/C++ version

• #if defined(__cplusplus) C++ code
• #if __cplusplus == 201103L ISO C++ 2011*
• #if __cplusplus == 201402L ISO C++ 2014*
• #if __cplusplus == 201703L ISO C++ 2017

Select code depending on the compiler

• #if defined(__GNUG__) The compiler is gcc/g++ †

• #if defined(__clang__) The compiler is clang/clang++

• #if defined(_MSC_VER) The compiler is Microsoft Visual C++

* MSVC defines __cplusplus == 199711L even for C++11/14
† __GNUC__ is defined by many compilers, e.g clang 55/66

https://devblogs.microsoft.com/cppblog/msvc-now-correctly-reports-__cplusplus/
https://stackoverflow.com/questions/38499462/how-to-tell-clang-to-stop-pretending-to-be-other-compilers


Condition Compiling Macros 2/2

Select code depending on the operating system or environment

• #if defined(_WIN64) OS is Windows 64-bit

• #if defined(__linux__) OS is Linux

• #if defined(__APPLE__) OS is Mac OS

• ...and many others

__DATE__ A string literal in the form "MMM DD YYYY" containing the date in which
the compilation process began

__TIME__ A string literal in the form "hh:mm:ss" containing the time at which the
compilation process began

56/66



Other Macros

Very comprehensive macro list:

• Pre-defined Compiler Macros wiki

• Boost.Predef

• How to detect the operating system type using compiler predefined
macros

57/66

https://github.com/cpredef/predef
https://www.boost.org/doc/libs/release/libs/predef/doc/index.html
https://web.archive.org/web/20191012035921/http:/nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_operating_system
https://web.archive.org/web/20191012035921/http:/nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_operating_system


Feature Testing Macro

C++17 introduces __has_include macro which returns 1 if header or source file
with the specified name exists

# if __has_include(<iostream>)
# include <iostream>
# endif

C++20 introduces a set of macros to evaluate if a given feature is supported by the
compiler

# if __cpp_constexpr
constexpr int square(int x) { return x * x; }
# endif

Feature Testing Macros 58/66

https://en.cppreference.com/w/User:D41D8CD98F/feature_testing_macros


Common Error 10 ⇝

Macros depend on compilers and environment!!

struct A {
int x; // enable C++11 code

# if __cplusplus >= 201103
A() = default;

# else
A() {}

# endif
};

// should return ≈ 10.0f
float safe_function() {

A a{}; // zero-initialization
for (int i = 0; i < 10; i++)

a.x += 1.0f;
return a.x;

}
// what is the behavior ???

The code works fine on Linux, but not under Windows MSVC. MSVC sets __cplusplus to
199711 even if C++11/14/17 flag is set!! in this case the code can return NaN

see Lecture “Object-Oriented Programming II - Zero Initialization" and MSVC now correctly
reports __cplusplus 59/66

https://devblogs.microsoft.com/cppblog/msvc-now-correctly-reports-__cplusplus/
https://devblogs.microsoft.com/cppblog/msvc-now-correctly-reports-__cplusplus/


Stringizing Operator (#)

The stringizing macro operator ( # ) causes the corresponding actual argument to be
enclosed in double quotation marks "

# define STRING_MACRO(string) #string

cout << STRING_MACRO(hello); // equivalent to "hello"

# define INFO_MACRO(my_func) \
{ \

my_func \
cout << "call " << #my_func << " at " \

<< __FILE__ << ":" __LINE__; \
}
void g(int) {}

INFO_MACRO( g(3) ) // print: "call g(3) at my_file.cpp:7"
60/66



Common Error 11

Code injection
# include <cstdio>

# define CHECK_ERROR(condition) \
{ \

if (condition) { \
std::printf("expr: " #condition " failed at line %d\n",\

__LINE__); \
} \

}

int t = 6, s = 3;
CHECK_ERROR(t > s) // print "expr: t > s failed at line 13"
CHECK_ERROR(t % s == 0) // segmentation fault!!! A
// printf interprets "% s" as a format specifier

61/66



#error and #warning

• #error "text" The directive emits a user-specified error message at compile
time when the compiler parse it and stop the compilation process

• C++23 #warning "text" The directive emits a user-specified warning message
at compile time when the compiler parse it without stopping the compilation
process

62/66



#pragma

The #pragma directive controls implementation-specific behavior of the compiler. In
general, it is not portable

• #pragma message "text" Display informational messages at compile time
(every time this instruction is parsed)

• #pragma GCC diagnostic warning "-Wformat"
Disable a GCC warning

• _Pragma(<command>) (C++11)
It is a keyword and can be embedded in a #define

# define MY_MESSAGE \
_Pragma("message(\"hello\")")

63/66



Token-Pasting Operator (##) ⋆

The token-concatenation (or pasting) macro operator ( ## ) allows combining two
tokens (without leaving no blank spaces)

# define FUNC_GEN_A(tokenA, tokenB) \
void tokenA##tokenB() {}

# define FUNC_GEN_B(tokenA, tokenB) \
void tokenA##_##tokenB() {}

FUNC_GEN_A(my, function)
FUNC_GEN_B(my, function)

myfunction(); // ok, from FUNC_GEN_A
my_function(); // ok, from FUNC_GEN_B

64/66



Variadic Macro ⋆

A variadic macro C++11 is a special macro accepting a variable number of arguments
(separated by comma)

Each occurrence of the special identifier __VA_ARGS__ in the macro replacement list
is replaced by the passed arguments

Example:
void f(int a) { printf("%d", a); }
void f(int a, int b) { printf("%d %d", a, b); }
void f(int a, int b, int c) { printf("%d %d %d", a, b, c); }

# define PRINT(...) \
f(__VA_ARGS__);

PRINT(1, 2)
PRINT(1, 2, 3) 65/66



Macro Trick ⋆

Convert a number literal to a string literal
# define TO_LITERAL_AUX(x) #x
# define TO_LITERAL(x) TO_LITERAL_AUX(x)

Motivation: avoid integer to string conversion (performance)

int main() {
int x1 = 3 * 10;
int y1 = __LINE__ + 4;
char x2[] = TO_LITERAL(3);
char y2[] = TO_LITERAL(__LINE__);

}

66/66


	Functions
	Pass by-Value
	Pass by-Pointer
	Pass by-Reference
	Function Signature and Overloading
	Overloading and =delete
	Default Parameters

	Function Pointers and Function Objects
	Function Pointer
	Function Object (or Functor)

	Lambda Expressions
	Capture List
	Lambda Expression and Function Relation
	Parameter Notes
	Composability
	Recursion
	constexpr/consteval
	template
	mutable
	Capture List and Classes

	Preprocessing
	Preprocessors
	Common Errors
	Source Location Macros
	Condition Compiling Macros
	Stringizing Operator #
	#error and #warning
	#pragma
	Token-Pasting Operator ## 
	Variadic Macro 


