Modern C++ Programming

3. Basic Concepts II
Integral and Floating-point Types

Federico Busato

Table of Contents

1 Integral Data Types

■ Fixed Width Integers
■ size_t and ptrdiff_t
■ Signed/Unsigned Integer Characteristics
■ Promotion, Truncation
■ Undefined Behavior

Table of Contents

2 Floating-point Types and Arithmetic

- IEEE Floating-point Standard and Other Representations
- Normal/Denormal Values
- Infinity (∞)
- Not a Number (NaN)
- Machine Epsilon
- Units at the Last Place (ULP)
- Cheatsheet
- Limits and Useful Functions

Table of Contents

- Arithmetic Properties
- Special Values Behavior
- Floating-Point Undefined Behavior
- Detect Floating-point Errors ${ }^{\star}$

3 Floating-point Issues

- Catastrophic Cancellation
- Floating-point Comparison

Integral Data Types

A Firmware Bug

"Certain SSDs have a firmware bug causing them to irrecoverably fail after exactly 32,768 hours of operation. SSDs that were put into service at the same time will fail simultaneously, so RAID won't help"

HPE SAS Solid State Drives - Critical Firmware Upgrade

Overflow Implementations

Google AI Blog

The latest news from Google AI

Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts are Broken
Friday, June 2, 2006
Posted by Joshua Bloch, Software Engineer

Note: Computing the average in the right way is not trivial, see On finding the average of two unsigned integers without overflow
related operations: ceiling division, rounding division
ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

Potentially Catastrophic Failure

$$
51 \text { days }=51 \cdot 24 \cdot 60 \cdot 60 \cdot 1000=4406400000 \mathrm{~ms}
$$

Boeing 787s must be turned off and on every 51 days to prevent 'misleading data' being shown to pilots

C++ Data Model

Model/Bits	OS	short	int	long	long long	pointer
ILP32	Windows/Unix 32-b	16	32	32	64	32
LLP64	Windows 64-bit	16	32	$\underline{32}$	64	64
LP64	Linux 64-bit	16	32	$\underline{64}$	64	64

char is always 1 byte
LP32 Windows 16-bit APIs (no more used)

int*_t <cstdint>

C++ provides fixed width integer types.
They have the same size on any architecture:
int8_t, uint8_t
int16_t, uint16_t
int32_t, uint32_t
int64_t, uint64_t
Good practice: Prefer fixed-width integers instead of native types. int and unsigned can be directly used as they are widely accepted by $\mathrm{C}++$ data models
int*_t types are not "real" types, they are merely typedefs to appropriate fundamental types

C++ standard does not ensure a one-to-one mapping:

- There are five distinct fundamental types (char, short, int, long, long long)
- There are four int*_t overloads (int8_t, int16_t, int32_t, and int64_t)

Fixed Width Integers

Warning: I/O Stream interprets uint8_t and int8_t as char and not as integer values

```
int8_t var;
cin >> var; // read '2'
cout << var; // print '2'
int a = var * 2;
cout << a; // print '100' !!
```


size_t and ptrdiff_t

size_t ptrdiff_t <cstddef>
size_t and ptrdiff_t are aliases data types capable of storing the biggest representable value on the current architecture

- size_t is an unsigned integer type (of at least 16 -bit)
- ptrdiff_t is the signed version of size_t commonly used for computing pointer differences
- size_t is the return type of sizeof () and commonly used to represent size measures
- size_t / ptrdiff_t are 4 bytes on 32-bit architectures, and 8 bytes on 64-bit architectures
- C++23 adds uz / UZ literals for size_t, and z/Z for ptrdiff_t

Signed/Unsigned Integer Characteristics

Signed and Unsigned integers use the same hardware for their operations, but they have very different semantic

Basic concepts:
Overflow The result of an arithmetic operation exceeds the word length, namely the positive/negative the largest values

Wraparound The result of an arithmetic operation is reduced modulo 2^{N} where N is the number of bits of the word

Signed Integer

- Represent positive, negative, and zero values (\mathbb{Z})
\checkmark Represent the human intuition of numbers
4 More negative values $\left(2^{31}-1\right)$ than positive $\left(2^{31}-2\right)$
Even multiply, division, and modulo by -1 can fail
4 Overflow/underflow semantic \rightarrow undefined behavior
Possible behavior: overflow: $\left(2^{31}-1\right)+1 \rightarrow \min$

$$
\text { underflow: }-2^{31}-1 \rightarrow \max
$$

4 Bit-wise operations are implementation-defined
e.g. signed shift \rightarrow undefined behavior

- Properties: commutative, reflexive, not associative (overflow/underflow)

Unsigned Integer

- Represent only non-negative values (\mathbb{N})
- Discontinuity in $0,2^{32}-1$
\checkmark Wraparound semantic \rightarrow well-defined (modulo 2^{32})
\checkmark Bit-wise operations are well-defined
- Properties: commutative, reflexive, associative

Google Style Guide

Because of historical accident, the $C++$ standard also uses unsigned integers to represent the size of containers - many members of the standards body believe this to be a mistake, but it is effectively impossible to fix at this point

Solution: use int64_t
max value: $2^{63}-1=9,223,372,036,854,775,807$ or 9 quintillion (9 billion of billion), about 292 years in nanoseconds, 9 million terabytes

When Use Signed/Unsigned Integer?

When use signed integer?

- if it can be mixed with negative values, e.g. subtracting byte sizes
- prefer expressing non-negative values with signed integer and assertions
- optimization purposes, e.g. exploit undefined behavior for overflow or in loops

When use unsigned integer?

- if the quantity can never be mixed with negative values (?)
- bitmask values
- optimization purposes, e.g. division, modulo
- safety-critical system, signed integer overflow could be "non-deterministic"

```
Subscripts and sizes should be signed, Bjarne Stroustrup
Don't add to the signed/unsigned mess, Bjarne Stroustrup
Integer Type Selection in C++: in Safe, Secure and Correct Code, Robert C. Seacord

\section*{Arithmetic Type Limits}

Query properties of arithmetic types in \(\mathrm{C}++11\) :
```

\#include <limits>
std::numeric_limits<int>::max(); // 2 31 - 1
std::numeric_limits<uint16_t>::max(); // 65,535
std::numeric_limits<int>::min(); // -2 31
std::numeric_limits<unsigned>::min(); // 0

```
* this syntax will be explained in the next lectures

\section*{Promotion and Truncation}

Promotion to a larger type keeps the sign
```

int16_t x = -1;
int y = x; // sign extend
cout << y; // print -1

```

Truncation to a smaller type is implemented as a modulo operation with respect to the number of bits of the smaller type
```

int }x=65537; // 2^16 + 1
int16_t y = x; // x % 2^16
cout << y; // print 1
int z = 32769; // 2^15 + 1 (does not fit in a int16_t)
int16_t w = z; // (int16_t) (x % 2^16 = 32769)
cout << w; // print -32767

```
```

unsigned a = 10; // array is small
int
b = -1;
array[10ull + a * b] = 0; // ?

```

是 Segmentation fault!
```

int f(int a, unsigned b, int* array) { // array is small
if (a > b)
return array[a - b]; // ?
return 0;
}

```

Segmentation fault for \(\mathrm{a}<0\) !
```

// v.size() return unsigned
for (size_t i = 0; i < v.size() - 1; i++)
array[i] = 3; // ?

```

Q Segmentation fault for v.size() == 0!

\section*{Mixing Signed/Unsigned Errors}

Easy case:
```

unsigned x = 32; // x can be also a pointer
x += 2u-4; // 2u-4=2 + (2-32 - 4)
// = 2^32 - 2
// (32 + (2^32 - 2)) % 2`32
cout << x; // print 30 (as expected)

```

\section*{What about the following code?}
```

uint64_t x = 32; // x can be also a pointer
x += 2u - 4;
cout << x;

```

\section*{Mixing Signed/Unsigned Errors}

\section*{A real-world case:}
```

// allocate a zerod rtx vector of N elements
//
// sizeof(struct rtvec_def) == 16
// sizeof(rtunion) == 8
rtvec rtvec_alloca(int n) {
rtvec rt;
int i;
rt = (rtvec)obstack_alloc(
rtl_obstack,
sizeof(struct rtvec_def) + ((n - 1) * sizeof(rtunion)));
// ...
return rt;
}
Garbage In, Garbage Out: Arguing about Undefined Behavior with Nasal Daemons,

The C++ standard does not prescribe any specific behavior (undefined behavior) for several integer/unsigned arithmetic operations

- Signed integer overflow/underflow

```
int x = std::numeric_limits<int>::max() + 20;
```

- More negative values than positive

```
int x = std::numeric_limits<int>::max() * -1; // (2`31 -1) * -1
cout << x;
// -2`31 +1 ok
int y = std::numeric_limits<int>::min() * -1; // -2^31 * -1
cout << y; // hard to see in complex examples // 2`31 overflow!!
```

- Initialize an integer with a value larger than its range is undefined behavior int $z=3000000000 ; / /$ undefined behavior!!
- Bitwise operations on signed integer types is undefined behavior

```
int y = 1 << 12; // undefined behavior!!
```

- Shift larger than \#bits of the data type is undefined behavior even for unsigned unsigned $\mathrm{y}=1 \mathrm{u} \ll 32 \mathrm{u}$; // undefined behavior!!
- Undefined behavior in implicit conversion

```
uint16_t a = 65535; // OxFFFF
uint16_t b = 65535; // OxFFFF expected: 4'294'836'225
cout << (a * b); // print '-131071' undefined behavior!! (int overflow)
```


Undefined Behavior - Signed Overflow Example 1

```
#include <climits>
#include <cstdio>
void f(int* ptr, int pos) {
    pos++;
    if (pos < 0) // <-- the compiler could assume that signed overflow never
        return; // happen and "simplify" the condition to check
    ptr[pos] = 0;
}
int main() { // the code compiled with optimizations, e.g. -03
    int* tmp = new int[10]; // leads to segmentation faults with clang, while
    f(tmp, INT_MAX); // it terminates correctly with gcc
    printf("%d\n", tmp[0]);
}
```


Undefined Behavior - Signed Overflow Example 2

s/open.c of the Linux kernel

```
int do_fallocate(..., loff_t offset, loff_t len) {
    inode *inode = ...;
    if (offset < 0 || len <= 0)
        return -EINVAL;
    /* Check for wrap through zero too */
    if ((offset + len > inode->i_sb->s_maxbytes) || (offset + len < 0))
        return -EFBIG; // the compiler is able to infer that both 'offset' and
    ...
    // 'len' are non-negative and can eliminate this check,
}
    // without verify integer overflow
```


Undefined Behavior - Division by Zero Example

src/backend/utils/adt/int8.c of PostgreSQL

```
if (arg2 == 0) {
    ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), // the compiler is not aware
    errmsg("division by zero"))); // that this function
}
    // doesn't return
/* No overflow is possible */
PG_RETURN_INT32((int32) arg1 / arg2); // the compiler assumes that the divisor is
// non-zero and can move this statement on
// the top (always executed)
```


Undefined Behavior - Implicit Overflow Example

```
Even worse example:
#include <iostream>
int main() {
    for (int i = 0; i < 4; ++i)
        std::cout << i * 1000000000 << std::endl;
}
// with optimizations, it is an infinite loop
// --> 1000000000 * i > INT_MAX
// undefined behavior!!
// the compiler translates the multiplication constant into an addition
```


Undefined Behavior - Common Loops

Is the following loop safe?

```
void f(int size) {
    for (int i = 1; i < size; i += 2)
}
```

- What happens if size is equal to INT_MAX ?
- How to make the previous loop safe?
- i >= 0 \&\& i < size is not the solution because of undefined behavior of signed overflow
- Can we generalize the solution when the increment is i += step ?

Overflow / Underflow

Detecting wraparound for unsigned integral types is not trivial

```
// some examples
bool is_add_overflow(unsigned a, unsigned b) {
    return (a + b) < a || (a + b) < b;
}
bool is_mul_overflow(unsigned a, unsigned b) {
    unsigned x = a * b;
    return a != 0 && (x / a) != b;
}
```

Detecting overflow/underflow for signed integral types is even harder and must be checked before performing the operation

Floating-point Types and Arithmetic

IEEE Floating-Point Standard

IEEE754 is the technical standard for floating-point arithmetic
The standard defines the binary format, operations behavior, rounding rules, exception handling, etc.

$$
\text { First Release : } 1985
$$

Second Release : 2008. Add 16-bit, 128-bit, 256-bit floating-point types
Third Release : 2019. Specify min/max behavior
see The IEEE Standard 754: One for the History Books
IEEE754 technical document:
754-2019 - IEEE Standard for Floating-Point Arithmetic
In general, $\mathrm{C} / \mathrm{C}++$ adopts IEEE754 floating-point standard:
en.cppreference.com/w/cpp/types/numeric_limits/is_iec559

32/64-bit Floating-Point

- IEEE754 Single-precision (32-bit) float

Sign	Exponent (or base)	Mantissa (or significant)
1-bit	8-bit	23-bit

- IEEE754 Double-precision (64-bit) double

Sign
1-bit

Exponent (or base)
Mantissa (or significant)
52-bit

128/256-bit Floating-Point

- IEEE754 Quad-Precision (128-bit) std::float128 C ++23

Sign	Exponent (or base)	Mantissa (or significant)
1-bit	15 -bit	112-bit

- IEEE754 Octuple-Precision (256-bit) (not standardized in C++)
Sign
1-bit
Exponent (or base) 19-bit
Mantissa (or significant) 236-bit

16-bit Floating-Point

- IEEE754 16-bit Floating-point (std::binary16) C++23 \rightarrow GPU, Arm7

Sign	Exponent
1-bit	5-bit

$$
\begin{gathered}
\text { Mantissa } \\
\text { 10-bit }
\end{gathered}
$$

- Google 16-bit Floating-point (std::bfloat16) C $++23 \rightarrow$ TPU, GPU, Arm8

Sign	Exponent
1-bit	8-bit

Mantissa
7-bit

8-bit Floating-Point (Non-Standardized in C++/IEEE)

- E4M3

$$
\begin{array}{cc}
\text { Sign } & \text { Exponent } \\
1 \text {-bit } & 4 \text {-bit }
\end{array}
$$

Mantissa
3-bit

- E5M2

Sign
 1-bit
 Exponent
 5-bit

Mantissa
2-bit

- Floating Point Formats for Machine Learning, IEEE draft
- FP8 Formats for Deep Learning, Intel, Nvidia, Arm

Other Real Value Representations (Non-standardized in C $++/$ IEEE)

- TensorFloat-32 (TF32) Specialized floating-point format for deep learning applications
- Posit (John Gustafson, 2017), also called unum III (universal number), represents floating-point values with variable-width of exponent and mantissa. It is implemented in experimental platforms
- NVIDIA Hopper Architecture In-Depth
- Beating Floating Point at its Own Game: Posit Arithmetic
- Posits, a New Kind of Number, Improves the Math of AI
- Comparing posit and IEEE-754 hardware cost

Other Real Value Representations (Non-standardized in C $++/$ IEEE)

- Microscaling Formats (MX) Specification for low-precision floating-point formats defined by AMD, Arm, Intel, Meta, Microsoft, NVIDIA, and Qualcomm. It includes FP8, FP6, FP4, (MX)INT8
- Fixed-point representation has a fixed number of digits after the radix point (decimal point). The gaps between adjacent numbers are always equal. The range of their values is significantly limited compared to floating-point numbers. It is widely used on embedded systems

Floating-point Representation

Floating-point number:

- Radix (or base): β
- Precision (or digits): p
- Exponent (magnitude): e
- Mantissa: M

$$
n=\underbrace{M}_{p} \times \beta^{e} \quad \rightarrow \quad \text { IEEE754: } 1 . M \times 2^{e}
$$

```
float f1 = 1.3f; // 1.3
float f2 = 1.1e2f; // 1.1.102
float f3 = 3.7E4f; // 3.7.104
float f4 = .3f; // 0.3
double d1 = 1.3; // without "f"
double d2 = 5E3; // 5 103
```


Floating-point Representation

Exponent Bias

In IEEE754 floating point numbers, the exponent value is offset from the actual value by the exponent bias

- The exponent is stored as an unsigned value suitable for comparison
- Floating point values are lexicographic ordered
- For a single-precision number, the exponent is stored in the range [1, 254] (0 and 255 have special meanings), and is biased by subtracting 127 to get an exponent value in the range $[-126,+127]$

0	10000111
+	$2^{(135-127)}=2^{8}$

$$
\begin{gathered}
11000000000000000000000 \\
\frac{1}{2^{1}}+\frac{1}{2^{2}}=0.5+0.25=0.75 \xrightarrow{\text { normal }} 1.75
\end{gathered}
$$

$$
+1.75 * 2^{8}=448.0
$$

Floating-point - Normal/Denormal

Normal number

A normal number is a floating point value that can be represented with at least one bit set in the exponent or the mantissa has all 0s

Denormal number

Denormal (or subnormal) numbers fill the underflow gap around zero in floating-point arithmetic. Any non-zero number with magnitude smaller than the smallest normal number is denormal

A denormal number is a floating point value that can be represented with all 0 s in the exponent, but the mantissa is non-zero

Floating-point - Normal/Denormal

Why denormal numbers make sense:

(\downarrow normal numbers)

The problem: distance values from zero (\downarrow denormal numbers)

[^0]
Infinity

In the IEEE754 standard, inf (infinity value) is a numeric data type value that exceeds the maximum (or minimum) representable value

Operations generating inf:

- $\pm \infty \cdot \pm \infty$
- $\pm \infty \cdot \pm$ finite_value
- finite_value op finite_value > max_value
- finite value $/ \pm 0$

There is a single representation for +inf and -inf
Comparison: (inf == finite_value) \rightarrow false

$$
(\pm \text { inf }== \pm \text { inf }) \quad \rightarrow \text { true }
$$

```
cout << 5.0 / 0.0; // print "inf"
cout << -5.0 / 0.0; // print "-inf"
auto inf = std::numeric_limits<float>::infinity;
cout << (-0.0 == 0.0); // true, 0 == 0
cout << ((5.0f / inf) == ((-5.0f / inf)); // true, 0 == 0
cout << (10e40f) == (10e40f + 9999999.0f); // true, inf == inf
cout << (10e40) == (10e40f + 9999999.0f); // false, 10e40 != inf
```


Not a Number (NaN)

NaN

In the IEEE754 standard, NaN (not a number) is a numeric data type value representing an undefined or non-representable value

Floating-point operations generating NaN :

- Operations with a NaN as at least one operand
- $\pm \infty \cdot \mp \infty, 0 \cdot \infty$
- $0 / 0, \infty / \infty$
- $\sqrt{x}, \log (x)$ for $x<0$
- $\sin ^{-1}(x), \cos ^{-1}(x)$ for $x<-1$ or $x>1$

Comparison: ($\mathrm{NaN}==\mathrm{x}$) \rightarrow false, for every x
$(\mathrm{NaN}==\mathrm{NaN}) \rightarrow$ false

Not a Number (NaN)

There are many representations for NaN (e.g. $2^{24}-2$ for float)
The specific (bitwise) NaN value returned by an operation is implementation/compiler specific

```
cout << 0 / 0; // undefined behavior
cout << 0.0 / 0.0; // print "nan" or "-nan"
```


Machine Epsilon

Machine epsilon
Machine epsilon ε (or machine accuracy) is defined to be the smallest number that can be added to 1.0 to give a number other than one

IEEE 754 Single precision : $\varepsilon=2^{-23} \approx 1.19209 * 10^{-7}$
IEEE 754 Double precision : $\varepsilon=2^{-52} \approx 2.22045 * 10^{-16}$

Units at the Last Place (ULP)

ULP

Units at the Last Place is the gap between consecutive floating-point numbers

$$
U L P(p, e)=\beta^{e-(p-1)} \rightarrow 2^{e-(p-1)}
$$

Example:

$$
\begin{aligned}
& \beta=10, p=3 \\
& \pi=3.1415926 \ldots \rightarrow x=3.14 \times 10^{0} \\
& \operatorname{ULP}(3,0)=10^{-2}=0.01
\end{aligned}
$$

Relation with ε :

- $\varepsilon=\operatorname{ULP}(p, 0)$
- $U L P_{x}=\varepsilon * \beta^{e(x)}$

Floating-Point Representation of a Real Number

The machine floating-point representation $\mathbf{f l}(x)$ of a real number x is expressed as $f f(x)=x(1+\delta)$, where δ is a small constant

The approximation of a real number x has the following properties:
Absolute Error: $|f(x)-x| \leq \frac{1}{2} \cdot U L P_{x}$

Relative Error: $\left|\frac{f l(x)-x}{x}\right| \leq \frac{1}{2} \cdot \varepsilon$

Floating-point - Cheatsheet

- NaN (mantissa $\neq 0$)
- \pm infinity
- Lowest/Largest $\left(\pm 3.40282 * 10^{+38}\right)$

$$
\text { * } 11111110
$$

```
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```

- Minimum (normal) $\left(\pm 1.17549 * 10^{-38}\right)$

00000000000000000000000

- Denormal number $\left(<2^{-126}\right)$ (minimum: $\left.1.4 * 10^{-45}\right)$
* 00000000

- ± 0

Floating-point - Cheatsheet

	E4M3	E5M2	half
Exponent	$4[0 *-14]$ (no inf)		
Bias	7		
Mantissa	4-bit	2-bit	10-bit
Largest (\pm)	$\begin{gathered} 1.75 * 2^{8} \\ 448 \end{gathered}$	$\begin{gathered} 1.75 * 2^{15} \\ 57,344 \end{gathered}$	$\begin{gathered} 2^{16} \\ 65,536 \end{gathered}$
Smallest (\pm)	$\begin{gathered} 2^{-6} \\ 0.015625 \end{gathered}$		
Smallest Denormal	$\begin{gathered} 2^{-9} \\ 0.001953125 \end{gathered}$	$\begin{gathered} 2^{-16} \\ 1.5258 * 10^{-5} \end{gathered}$	$\begin{gathered} 2^{-24} \\ 6.0 \cdot 10^{-8} \end{gathered}$
Epsilon	$\begin{gathered} 2^{-4} \\ 0.0625 \end{gathered}$	$\begin{aligned} & 2^{-2} \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{gathered} 2^{-10} \\ 0.00098 \end{gathered}$

Floating-point - Cheatsheet

bfloat16 float double

Exponent		8-bit [0*-254]	11-bit [0*-2046]
Bias		127	1023
Mantissa	7-bit	23-bit	52-bit
Largest (\pm)		$\begin{gathered} 2^{128} \\ 3.4 \cdot 10^{38} \end{gathered}$	$\begin{gathered} 2^{1024} \\ 1.8 \cdot 10^{308} \end{gathered}$
Smallest (\pm)		$\begin{gathered} 2^{-126} \\ 1.2 \cdot 10^{-38} \end{gathered}$	$\begin{gathered} 2^{-1022} \\ 2.2 \cdot 10^{-308} \end{gathered}$
Smallest Denormal	/	$\begin{gathered} 2^{-149} \\ 1.4 \cdot 10^{-45} \end{gathered}$	$\begin{gathered} 2^{-1074} \\ 4.9 \cdot 10^{-324} \end{gathered}$
Epsilon	$\begin{gathered} 2^{-7} \\ 0.0078 \end{gathered}$	$\begin{gathered} 2^{-23} \\ 1.2 \cdot 10^{-7} \end{gathered}$	$\begin{gathered} 2^{-52} \\ 2.2 \cdot 10^{-16} \end{gathered}$

Floating-point - Limits

```
#include <limits>
// T: float or double
std::numeric_limits<T>::max(); // largest value
std::numeric_limits<T>::lowest(); // lowest value (C++11)
std::numeric_limits<T>::min(); // smallest value
std::numeric_limits<T>::denorm_min() // smallest (denormal) value
std::numeric_limits<T>::epsilon(); // epsilon value
std::numeric_limits<T>::infinity() // infinity
std::numeric_limits<T>::quiet_NaN() // NaN
```


Floating-point - Useful Functions

```
#include <cmath> // C++11
bool std::isnan(T value) // check if value is NaN
bool std::isinf(T value) // check if value is 土infinity
bool std::isfinite(T value) // check if value is not NaN
// and not 士infinity
bool std::isnormal(T value); // check if value is Normal
T std::ldexp(T x, p) // exponent shift x* 2p
int std::ilogb(T value) // extracts the exponent of value
```

Floating-point operations are written

- \oplus addition
- \ominus subtraction
- \otimes multiplication
- \oslash division
$\odot \in\{\oplus, \ominus, \otimes, \oslash\}$
$o p \in\{+,-, *, /\}$ denotes exact precision operations

Floating-point Arithmetic Properties

(P1) In general, a op $b \neq a \odot b$
(P2) Not Reflexive $a \neq a$

- Reflexive without NaN
(P3) Not Commutative $a \odot b \neq b \odot a$
- Commutative without $\mathrm{NaN}(\mathrm{NaN} \neq \mathrm{NaN})$
(P4) In general, Not Associative $(a \odot b) \odot c \neq a \odot(b \odot c)$
- even excluding NaN and inf in intermediate computations
(P5) In general, Not Distributive $(a \oplus b) \otimes c \neq(a \otimes c) \oplus(b \otimes c)$
- even excluding NaN and inf in intermediate computations
(P6) Identity on operations is not ensured
- $(a \ominus b) \oplus b \neq a$
- $(a \oslash b) \otimes b \neq a$
(P7) Overflow/Underflow Floating-point has "saturation" values inf, -inf
- as opposite to integer arithmetic with wrap-around behavior

Special Values Behavior

Zero behavior

- $a \oslash 0=$ inf, $a \in\{$ finite -0$\} \quad$ [IEEE-764], undefined behavior in $C++$
- $0 \oslash 0$, inf $\oslash 0=\mathrm{NaN} \quad$ [IEEE-764], undefined behavior in $\mathrm{C}++$
- $0 \otimes \inf =\mathrm{NaN}$
- $+0=-0$ but they have a different binary representation

Inf behavior

- inf $\odot a=\inf , a \in\{$ finite -0$\}$
- inf $\oplus \otimes i n f=i n f$
- inf $\ominus \oslash i n f=N a N$
- 士 inf $\odot \mp \inf =\mathrm{NaN}$
- \pm inf $= \pm i n f$

NaN behavior

- NaN $\odot a=\mathrm{NaN}$
- $\mathrm{NaN} \neq a$

Floating-Point Undefined Behavior

- Division by zero
e.g., $10^{8} / 0.0$
- Conversion to a narrower floating-point type:
e.g., 0.1 double \rightarrow float
- Conversion from floating-point to integer:
e.g., 10^{8} float \rightarrow int
- Operations on signaling NaNs: Arithmetic operations that cause an "invalid operation" exception to be signaled e.g., inf - inf
- Incorrectly assuming IEEE-754 compliance for all platforms:
e.g., Some embedded Linux distribution on ARM

Detect Floating-point Errors

C ++11 allows determining if a floating-point exceptional condition has occurred by using floating-point exception facilities provided in <cfenv>

```
#include <cfenv>
// MACRO
FE_DIVBYZERO // division by zero
FE_INEXACT // rounding error
FE_INVALID // invalid operation, i.e. NaN
FE_OVERFLOW // overflow (reach saturation value +inf)
FE_UNDERFLOW // underflow (reach saturation value -inf)
FE_ALL_EXCEPT // all exceptions
```

// functions
std::feclearexcept(FE_ALL_EXCEPT); // clear exception status
std::fetestexcept(<macro>); // returns a value != 0 if an
// exception has been detected

Detect Floating-point Errors

```
#include <cfenv> // floating point exceptions
#include <iostream>
#pragma STDC FENV_ACCESS ON // tell the compiler to manipulate the floating-point
                                    // environment (not supported by all compilers)
                                    // gcc: yes, clang: no
int main() {
    std::feclearexcept(FE_ALL_EXCEPT); // clear
    auto x = 1.0 / 0.0; // all compilers
    std::cout << (bool) std::fetestexcept(FE_DIVBYZERO); // print true
    std::feclearexcept(FE_ALL_EXCEPT); // clear
    auto x2 = 0.0 / 0.0; // all compilers
    std::cout << (bool) std::fetestexcept(FE_INVALID); // print true
    std::feclearexcept(FE_ALL_EXCEPT); // clear
    auto x4 = 1e38f * 10; // gcc: ok
    std::cout << std::fetestexcept(FE_OVERFLOW); // print true
}
```


Floating-point Issues

Some Examples...

Ariene 5: data conversion from 64-bit floating point value to 16 -bit signed integer $\rightarrow \$ 137$ million

Patriot Missile: small chopping error at each operation, 100 hours activity
$\rightarrow 28$ deaths

Integer type is more accurate than floating type for large numbers

```
cout << 16777217; // print 16777217
cout << (int) 16777217.0f; // print 16777216!!
cout << (int) 16777217.0; // print 16777217, double ok
```

float numbers are different from double numbers

```
cout << (1.1 != 1.1f); // print true !!!
```


The floating point precision is finite!

```
cout << setprecision(20);
cout << 3.33333333f; // print 3.333333254!!
cout << 3.33333333; // print 3.333333333
cout << (0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1); // print 0.59999999999999998
```

Floating point arithmetic is not associative

```
cout << 0.1 + (0.2 + 0.3) == (0.1 + 0.2) + 0.3; // print false
```

IEEE754 Floating-point computation guarantees to produce deterministic output, namely the exact bitwise value for each run, if and only if the order of the operations is always the same
\rightarrow same result on any machine and for all runs
"Using a double-precision floating-point value, we can represent easily the number of atoms in the universe.

If your software ever produces a number so large that it will not fit in a double-precision floating-point value, chances are good that you have a bug"

Daniel Lemire, Prof. at the University of Quebec
" NASA uses just 15 digits of π to calculate interplanetary travel.
With 40 digits, you could calculate the circumference of a circle the size of the visible universe with an accuracy that would fall by less than the diameter of a single hydrogen atom"

Latest in space, Twitter

Floating-point Algorithms

- addition algorithm (simplified):
(1) Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent
(2) Add the mantissa
(3) Normalize the sum if needed (shift right/left the exponent by 1)
- multiplication algorithm (simplified):
(1) Multiplication of mantissas. The number of bits of the result is twice the size of the operands ($46+2$ bits, with +2 for implicit normalization)
(2) Normalize the product if needed (shift right/left the exponent by 1)
(3) Addition of the exponents
- fused multiply-add (fma):
- Recent architectures (also GPUs) provide fma to compute addition and multiplication in a single instruction (performed by the compiler in most cases)
- The rounding error of $\operatorname{fma}(x, y, z)$ is less than $(x \otimes y) \oplus z$

Catastrophic Cancellation

Catastrophic cancellation (or loss of significance) refers to loss of relevant information in a floating-point computation that cannot be revered

Two cases:
(C1) $\mathbf{a} \pm \mathbf{b}$, where $\mathbf{a} \gg \mathbf{b}$ or $\mathbf{b} \gg \mathbf{a}$. The value (or part of the value) of the smaller number is lost
(C2) $\mathbf{a}-\mathbf{b}$, where \mathbf{a}, \mathbf{b} are approximation of exact values and $\mathbf{a} \approx \mathbf{b}$, namely a loss of precision in both \mathbf{a} and \mathbf{b}. $\mathbf{a}-\mathbf{b}$ cancels most of the relevant part of the result because $\mathbf{a} \approx \mathbf{b}$. It implies a small absolute error but a large relative error

Catastrophic Cancellation (case 1) - Granularity

Catastrophic Cancellation (case 1)

How many iterations performs the following code?

```
while (x > 0)
    x = x - y;
```

How many iterations?

```
float: x = 10,000,000 y = 1 -> 10,000,000
float: x = 30,000,000 y = 1 -> does not terminate
float: x = 200,000 y = 0.001 -> does not terminate
bfloat: x = 256 y = 1 -> does not terminate !!
```


Catastrophic Cancellation (case 1)

Floating-point increment

```
float x = 0.0f;
for (int i = 0; i < 20000000; i++)
x += 1.0f;
```

What is the value of x at the end of the loop?

Ceiling division $\left\lceil\frac{a}{b}\right\rceil$

```
// std::ceil((float) 101 / 2.0f) -> 50.5f -> 51
float x = std::ceil((float) 20000001 / 2.0f);
```

What is the value of x ?

Catastrophic Cancellation (case 2)

Let's solve a quadratic equation:

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

```
x}\mp@subsup{x}{}{2}+5000x+0.2
(-5000 + std::sqrt(5000.0f * 5000.0f - 4.0f * 1.0f * 0.25f)) / 2 // x2
(-5000 + std::sqrt(25000000.0f - 1.0f)) / 2 // catastrophic cancellation (C1)
(-5000 + std::sqrt(25000000.0f)) / 2
(-5000 + 5000) / 2 = 0 // catastrophic cancellation (C2)
// correct result: 0.00005!!
relative error:}\frac{|0-0.00005|}{0.00005}=100
```


Floating-point Comparison

The problem

```
cout << (0.11f + 0.11f < 0.22f); // print true!!
cout << (0.1f + 0.1f > 0.2f); // print true!!
```

Do not use absolute error margins!!

```
bool areFloatNearlyEqual(float a, float b) {
    if (std::abs(a - b) < epsilon); // epsilon is fixed by the user
        return true;
        return false;
}
```

Problems:

- Fixed epsilon "looks small" but it could be too large when the numbers being compared are very small
- If the compared numbers are very large, the epsilon could end up being smaller than the smallest rounding error, so that the comparison always returns false

Floating-point Comparison

Solution: Use relative error $\quad \frac{|a-b|}{b}<\varepsilon$

```
bool areFloatNearlyEqual(float a, float b) {
    if (std::abs(a - b) / b < epsilon); // epsilon is fixed
        return true;
    return false;
}
```

Problems:

- $a=0, b=0$ The division is evaluated as $0.0 / 0.0$ and the whole if statement is (nan < espilon) which always returns false
- $\mathrm{b}=0$ The division is evaluated as abs(a)/0.0 and the whole if statement is (+inf < espilon) which always returns false
- a and b very small. The result should be true but the division by b may produces wrong results
- It is not commutative. We always divide by b

Floating-point Comparison

Possible solution: $\quad \frac{|a-b|}{\max (|a|,|b|)}<\varepsilon$

```
bool areFloatNearlyEqual(float a, float b) {
    constexpr float normal_min = std::numeric_limits<float>::min();
    constexpr float relative_error = <user_defined>
    if (!std::isfinite(a) || !isfinite(b)) // a= 土\infty,NaN or b= 土\infty,NaN
        return false;
    float diff = std::abs(a - b);
    // if "a" and "b" are near to zero, the relative error is less effective
    if (diff <= normal_min) // or also: user_epsilon * normal_min
        return true;
    float abs_a = std::abs(a);
    float abs_b = std::abs(b);
    return (diff / std::max(abs_a, abs_b)) <= relative_error;
}

\section*{Minimize Error Propagation - Summary}
- Prefer multiplication/division rather than addition/subtraction
- Try to reorganize the computation to keep near numbers with the same scale (e.g. sorting numbers)
- Consider putting a zero very small number (under a threshold). Common application: iterative algorithms
- Scale by a power of two is safe
- Switch to log scale. Multiplication becomes Add, and Division becomes Subtraction
- Use a compensation algorithm like Kahan summation, Dekker's FastTwoSum, Rump's AccSum

\section*{References}

\section*{Suggest readings:}
- What Every Computer Scientist Should Know About Floating-Point Arithmetic
- Do Developers Understand IEEE Floating Point?
- Yet another floating point tutorial
- Unavoidable Errors in Computing

\section*{Floating-point Comparison readings:}
- The Floating-Point Guide - Comparison
- Comparing Floating Point Numbers, 2012 Edition
- Some comments on approximately equal FP comparisons
- Comparing Floating-Point Numbers Is Tricky

Floating point tools:
- IEEE754 visualization/converter
- Find and fix floating-point problems

\section*{On Floating-Point}


DURING A COMPETTITIN, I TOL THE PROGRAMMERS ON OUR TEAM THAT \(e^{\pi}-\pi\) WAS A STANDARD TESTOF FLOATNGPOINT HANDLERS -- IT WOULD COME OUT TO 20 UNLESS THEY HAD ROUNDING ERRORS.

```


[^0]: Floating-point representation, by Carl Burch

