
Modern C++
Programming

3. Basic Concepts I
Type System, Fundamental Types, and Operators

Federico Busato
2025-01-22

Table of Contents

1 The C++ Type System
Type Categories

Type Properties ⋆

2 Fundamental Types Overview
Arithmetic Types

Suffix and Prefix

Non-Standard Arithmetic Types

void Type

nullptr

1/29

Table of Contents

3 Conversion Rules

4 auto Keyword

5 C++ Operators
Operators Precedence

Prefix/Postfix Increment/Decrement Semantic

Assignment, Compound, and Comma Operators

Spaceship Operator <=> ⋆

Safe Comparison Operators ⋆

2/29

The C++ Type
System

The C++ Type System

C++ is a strongly typed and statically typed language

Every entity has a type and that type never changes

Every variable, function, or expression has a type in order to be compiled. Users can
introduce new types with class or struct

The type specifies:

• The amount of memory allocated for the variable (or expression result)
• The kinds of values that may be stored and how the compiler interprets the bit

patterns in those values
• The operations that are permitted for those entities and provides semantics

3/29

Type Categories

C++ organizes the language types in two main categories:

• Fundamental types (often called primitive types): Types provided by the
language itself and don’t require additional headers

• Arithmetic types: integer and floating point
• void
• nullptr C++11

• Compound types: Composition or references to other types
• Pointers
• References
• Enumerators
• Arrays
• struct , class , union
• Functions

4/29

Type Properties ⋆ 1/2

C++ types can be also classified based on their properties:

• Objects:
• size: sizeof is defined
• alignment requirement: alignof is defined
• storage duration: describe when an object is allocated and deallocated
• lifetime, bounded by storage duration or temporary
• value, potentially indeterminate
• optionally, a name.

Types: Arithmetic, Pointers and nullptr , Enumerators, Arrays, struct ,
class , union

5/29

Type Properties ⋆ 2/2

• Scalar:
• Hold a single value and is not composed of other objects
• Trivially Copyable: can be copied bit for bit
• Standard Layout: compatible with C functions and structs
• Implicit Lifetime: no user-provided constructor or destructor

Types: Arithmetic, Pointers and nullptr , Enumerators

• Trivial types: Trivial default/copy constructor, copy assignment operator, and
destructor → Trivially Copyable
Types: Scalar, trivial class types, arrays of such types

• Incomplete types: A type that has been declared but not yet defined
Types: void , incompletely-defined object types, e.g. struct A; , array of elements of
incomplete type

6/29

C++ Types Summary

7/29

Fundamental Types
Overview

Arithmetic Types - Integral

Native Type Bytes Range
Fixed width types
<cstdint>

bool 1 true, false
char † 1 implementation defined
signed char 1 -128 to 127 int8 t
unsigned char 1 0 to 255 uint8 t
short 2 -215 to 215-1 int16 t
unsigned short 2 0 to 216-1 uint16 t
int 4 -231 to 231-1 int32 t
unsigned int 4 0 to 232-1 uint32 t
long int 4/8∗ int32 t/int64 t
long unsigned int 4/8∗ uint32 t/uint64 t
long long int 8 -263 to 263-1 int64 t
long long unsigned int 8 0 to 264-1 uint64 t

∗ 4 bytes on Windows64 systems, † signed/unsigned, two-complement from C++11
8/29

Arithmetic Types - Floating-Point

Native Type IEEE Bytes Range
Fixed width types
C++23 <stdfloat>

(bfloat16) N 2 ±1.18 × 10−38 to ±3.4 × 10+38 std::bfloat16 t

(float16) Y 2 0.00006 to 65, 536 std::float16 t

float Y 4 ±1.18 × 10−38 to ±3.4 × 10+38 std::float32 t

double Y 8 ±2.23 × 10−308 to ±1.8 × 10+308 std::float64 t

9/29

Arithmetic Types - Short Name

Signed Type short name

signed char /

signed short int short

signed int int

signed long int long

signed long long int long long

Unsigned Type short name

unsigned char /
unsigned short int unsigned short
unsigned int unsigned
unsigned long int unsigned long
unsigned long long int unsigned long long 10/29

Arithmetic Types - Suffix (Literals)

Type SUFFIX Example Notes

int / 2
unsigned int u, U 3u
long int l, L 8L
long unsigned ul, UL 2ul
long long int ll, LL 4ll
long long unsigned int ull, ULL 7ULL
float f, F 3.0f only decimal numbers
double 3.0 only decimal numbers

C++23 Type SUFFIX Example Notes

std::bfloat16 t bf16, BF16 3.0bf16 only decimal numbers
std::float16 t f16, F16 3.0f16 only decimal numbers
std::float32 t f32, F32 3.0f32 only decimal numbers
std::float64 t f64, F64 3.0f64 only decimal numbers
std::float128 t f128, F128 3.0f128 only decimal numbers 11/29

Arithmetic Types - Prefix (Literals)

Representation PREFIX Example

Binary C++14 0b 0b010101
Octal 0 0307
Hexadecimal 0x or 0X 0xFFA010

C++14 also allows digit separators for improving the readability 1'000'000

12/29

Other Arithmetic Types

• C++ also provides long double (no IEEE-754) of size 8/12/16 bytes
depending on the implementation

• Reduced precision floating-point supports before C++23:
- Some compilers provide support for half (16-bit floating-point) (GCC for ARM: fp16 ,

LLVM compiler: half)

- Some modern CPUs and GPUs provide half instructions

- Software support: OpenGL, Photoshop, Lightroom, half.sourceforge.net

• C++ does not provide 128-bit integers even if some architectures support it.
clang and gcc allow 128-bit integers as compiler extension (int128)

13/29

http://half.sourceforge.net/

void Type

void is an incomplete type (not defined) without a value

• void indicates also a function with no return type or no parameters
e.g. void f() , f(void)

• In C sizeof(void) == 1 (GCC), while in C++ sizeof(void) does not
compile!!

int main() {
// sizeof(void); // compile error
}

14/29

nullptr Keyword

C++11 introduces the keyword nullptr to represent a null pointer (0x0) and
replacing the NULL macro

nullptr is an object of type nullptr t → safer

int* p1 = NULL; // ok, equal to int* p1 = 0l
int* p2 = nullptr; // ok, nullptr is convertible to a pointer

int n1 = NULL; // ok, we are assigning 0 to n1
//int n2 = nullptr; // compile error nullptr is not convertible to an integer

//int* p2 = true ? 0 : nullptr; // compile error incompatible types

15/29

Conversion Rules

Conversion Rules

Implicit type conversion rules, applied in order, before any operation:
⊗: any operation (*, +, /, -, %, etc.)

(A) Floating point promotion
floating type ⊗ integer type → floating type

(B) Implicit integer promotion
small integral type := any signed/unsigned integral type smaller than int
small integral type ⊗ small integral type → int

(C) Size promotion
small type ⊗ large type → large type

(D) Sign promotion
signed type ⊗ unsigned type → unsigned type 16/29

Examples and Common Errors

float f = 1.0f;
unsigned u = 2;
int i = 3;
short s = 4;
uint8_t c = 5; // unsigned char

f * u; // float × unsigned → float: 2.0f
s * c; // short × unsigned char → int: 20
u * i; // unsigned × int → unsigned: 6u
+c; // unsigned char → int: 5

Integers are not floating points!
int b = 7;
float a = b / 2; // a = 3 not 3.5!!
int c = b / 2.0; // again c = 3 not 3.5!!

17/29

Implicit Promotion

Integral data types smaller than 32-bit are implicitly promoted to int , independently
if they are signed or unsigned

• Unary +, -, ∼ and Binary +, -, &, etc. promotion:

char a = 48; // '0'
cout << a; // print '0'
cout << +a; // print '48'
cout << (a + 0); // print '48'

uint8_t a1 = 255;
uint8_t b1 = 255;
cout << (a1 + b1); // print '510' (no overflow)

18/29

auto Keyword

auto Keyword 1/3

C++11 The auto keyword specifies that the type of the variable will be automatically
deduced by the compiler (from its initializer)
auto a = 1 + 2; // 1 is int, 2 is int, 1 + 2 is int!
// -> 'a' is "int"
auto b = 1 + 2.0; // 1 is int, 2.0 is double. 1 + 2.0 is double
// -> 'b' is "double"

auto can be very useful for maintainability and for hiding complex type definitions
for (auto i = k; i < size; i++)

...

On the other hand, it may make the code less readable if excessively used because of
type hiding
Example: auto x = 0; in general makes no sense (x is int)

19/29

auto Keyword - Functions ⋆ 2/3

In C++11/C++14, auto (as well as decltype) can be used to define function
output types

auto g(int x) -> int { return x * 2; } // C++11
// "-> int" is the deduction type
// a better way to express it is:

auto g2(int x) -> decltype(x * 2) { return x * 2; } // C++11

auto h(int x) { return x * 2; } // C++14

//--

int x = g(3); // C++11

20/29

auto Keyword - Functions ⋆ 3/3

In C++20, auto can be also used to define function input

void f(auto x) {}
// equivalent to templates but less expensive at compile-time

//--

f(3); // 'x' is int
f(3.0); // 'x' is double

21/29

C++ Operators

Operators Overview

Precedence Operator Description Associativity

1 a++ a-- Suffix/postfix increment and decrement Left-to-right

2
+a -a ++a --a

! not ∼
Plus/minus, Prefix increment/decrement,
Logical/Bitwise Not

Right-to-left

3 a*b a/b a%b Multiplication, division, and remainder Left-to-right
4 a+b a-b Addition and subtraction Left-to-right
5 ≪ ≫ Bitwise left shift and right shift Left-to-right
6 < <= > >= Relational operators Left-to-right
7 == != Equality operators Left-to-right
8 & Bitwise AND Left-to-right
9 ˆ Bitwise XOR Left-to-right
10 | Bitwise OR Left-to-right
11 && and Logical AND Left-to-right
12 || or Logical OR Left-to-right

13
= += -= *= /= %=
<<= >>= &= ˆ= |=

Assignment and Compound operators Right-to-left
22/29

Operators Precedence 1/2

Operators precedence :

• Unary operators have higher precedence than binary operators

• Standard math operators (+, *, etc.) have higher precedence than
comparison, bitwise, and logic operators

• Bitwise and logic operators have higher precedence than comparison operators

• Bitwise operators have higher precedence than logic operators

• Compound assignment operators += , -= , *= , /= , %= , ˆ= , != , &= ,
>>= , <<= have lower priority

• The comma operator has the lowest precedence (see next slides) 23/29

https://en.cppreference.com/w/cpp/language/operator_precedence

Operators Precedence 2/2

Examples:
a + b * 4; // a + (b * 4)

a * b / c % d; // ((a * b) / c) % d

a + b < 3 >> 4; // (a + b) < (3 >> 4)

a && b && c || d; // (a && b && c) || d

a and b and c or d; // (a && b && c) || d

a | b & c || e && d; // ((a | (b & c)) || (e && d)

Important: sometimes parenthesis can make an expression verbose... but they can
help! 24/29

Prefix/Postfix Increment Semantic

Prefix Increment/Decrement ++i , --i

(1) Update the value
(2) Return the new (updated) value

Postfix Increment/Decrement i++ , i--

(1) Save the old value (temporary)
(2) Update the value
(3) Return the old (original) value

Prefix/Postfix increment/decrement semantic applies not only to built-in types but
also to objects

25/29

Operation Ordering Undefined Behavior ⋆

Expressions with undefined (implementation-defined) behavior:
int i = 0;
i = ++i + 2; // until C++11: undefined behavior

// since C++11: i = 3
i = 0;
i = i++ + 2; // until C++17: undefined behavior

// since C++17: i = 3

f(i = 2, i = 1); // until C++17: undefined behavior
// since C++17: i = 2

i = 0;
a[i] = ++i; // until C++17: undefined behavior

// since C++17: a[1] = 1

f(++i, ++i); // undefined behavior
i = ++i + i++; // undefined behavior 26/29

Assignment, Compound, and Comma Operators

Assignment and compound assignment operators have right-to-left associativity
and their expressions return the assigned value
int y = 2;
int x = y = 3; // y=3, then x=3

// the same of x = (y = 3)
if (x = 4) // assign x=4 and evaluate to true

The comma operator⋆ has left-to-right associativity. It evaluates the left expression,
discards its result, and returns the right expression
int a = 5, b = 7;
int x = (3, 4); // discards 3, then x=4
int y = 0;
int z;
z = y, x; // z=y (0), then returns x (4) 27/29

Spaceship Operator <=> ⋆

C++20 provides the three-way comparison operator <=> , also called spaceship
operator, which allows comparing two objects similarly of strcmp . The operator
returns an object that can be directly compared with a positive, 0, or negative integer
value

(3 <=> 5) == 0; // false
('a' <=> 'a') == 0; // true

(3 <=> 5) < 0; // true
(7 <=> 5) < 0; // false

The semantic of the spaceship operator can be extended to any object (see next
lectures) and can greatly simplify the comparison operators overloading

28/29

Safe Comparison Operators ⋆

C++20 introduces a set of functions <utility> to safely compare integers of
different types (signed, unsigned)
bool cmp_equal(T1 a, T2 b)
bool cmp_not_equal(T1 a, T2 b)
bool cmp_less(T1 a, T2 b)
bool cmp_greater(T1 a, T2 b)
bool cmp_less_equal(T1 a, T2 b)
bool cmp_greater_equal(T1 a, T2 b)

example:
include <utility>
unsigned a = 4;
int b = -3;
bool v1 = (a > b); // false!!!, see next slides
bool v2 = std::cmp_greater(a, b); // true

How to compare signed and unsigned integers in C++20?
29/29

https://www.sandordargo.com/blog/2023/10/11/cpp20-intcmp-utilities

	The C++ Type System
	Type Categories
	Type Properties

	Fundamental Types Overview
	Arithmetic Types
	Suffix and Prefix
	Non-Standard Arithmetic Types
	void Type
	nullptr

	Conversion Rules
	auto Keyword
	C++ Operators
	Operators Precedence
	Prefix/Postfix Increment/Decrement Semantic
	Assignment, Compound, and Comma Operators
	Spaceship Operator <=>
	Safe Comparison Operators

