Modern C++
Programming

3. BAsic CONCEPTS I

TYPE SYSTEM, FUNDAMENTAL TYPES, AND OPERATORS

Federico Busato
2025-01-22

Table of Contents

The C++ Type System
m Type Categories

m Type Properties *

Fundamental Types Overview
m Arithmetic Types
m Suffix and Prefix
m Non-Standard Arithmetic Types
m void Type

m nullptr

1/29

Table of Contents

Conversion Rules
O auto Keyword

H C++ Operators
m Operators Precedence
m Prefix/Postfix Increment/Decrement Semantic
m Assignment, Compound, and Comma Operators
m Spaceship Operator <=> *¥

m Safe Comparison Operators ¥

2/29

The C++4 Type
System

The C++ Type System

C++ is a strongly typed and statically typed language
Every entity has a type and that type never changes

Every variable, function, or expression has a type in order to be compiled. Users can
introduce new types with class or struct

The type specifies:

= The amount of memory allocated for the variable (or expression result)

= The kinds of values that may be stored and how the compiler interprets the bit
patterns in those values

= The operations that are permitted for those entities and provides semantics

3/29

Type Categories

C++ organizes the language types in two main categories:

= Fundamental types (often called primitive types): Types provided by the
language itself and don’t require additional headers
= Arithmetic types: integer and floating point
= yoid
= nullptr C++11

= Compound types: Composition or references to other types
= Pointers
= References
= Enumerators
= Arrays
s struct, class, union

= Functions /
4/29

Type Properties *

C++ types can be also classified based on their properties:

= Objects:

size: sizeof is defined

alignment requirement: alignof is defined

storage duration: describe when an object is allocated and deallocated
lifetime, bounded by storage duration or temporary

value, potentially indeterminate

optionally, a name.

Types: Arithmetic, Pointers and nullptr , Enumerators, Arrays, struct,

class, union

5/29

Type Properties *

= Scalar:
= Hold a single value and is not composed of other objects
= Trivially Copyable: can be copied bit for bit
= Standard Layout: compatible with C functions and structs
= Implicit Lifetime: no user-provided constructor or destructor

Types: Arithmetic, Pointers and nullptr , Enumerators

= Trivial types: Trivial default/copy constructor, copy assignment operator, and
destructor — Trivially Copyable

Types: Scalar, trivial class types, arrays of such types

= Incomplete types: A type that has been declared but not yet defined
Types: void , incompletely-defined object types, e.g. struct A; , array of elements of

incomplete type 6/29

C++ Types Summary

[Fundamental Types] Compound Types

Reference Function

Can be Trivial
and Incomplete

Object
class, .
Array ST union
l Scalar

o~ Arithmetic

Incc r Type J l

Floating-point Integral enum, Pointer Pl =
enum class member

7/29

Fundamental Types
Overview

Arithmetic Types - Integral

Fixed width types

Native Type Bytes Range pE——

bool 1 true, false

char | 1 implementation defined

signed char 1 -128 to 127 int8_t
unsigned char 1 0 to 255 uint8_t
short 2 -2'% to 21-1 intl6._t
unsigned short 2 0 to 2'%-1 uintl6_t
int 4 -2% 10 2911 int32_t
unsigned int 4 0 to 2%%-1 uint32_t
long int 4/8 int32_t/int64_t
long unsigned int 4/8* uint32_t/uint64_t
long long int 8 =283 10 2%-1 int64_t
long long unsigned int 8 0 to 2%-1 uint64_t

8/29
* 4 bytes on Windows64 systems, signed/unsigned, two-complement from C+4+11 /

Arithmetic Types - Floating-Point

Fixed width types

Native Type |IEEE Bytes Range C4+423 <stdfloat>
(bfloat16) N 2 +1.18 x 107 to +3.4 x 10*3® std::bfloat16_t
(float16) Y 2 0.00006 to 65,536 std::float16_t
float Y 4 +1.18 x 107%® to +£3.4 x 10*3® std::float32_t
double Y 8 4223 x107% to 1.8 x 1013 std::float64_t

9/29

Arithmetic Types - Short Name

Signed Type short name
signed char /
signed short int short
signed int int
signed long int long
signed long long int long long
Unsigned Type short name
unsigned char /

unsigned short int
unsigned int

unsigned long int
unsigned long long int

unsigned short
unsigned
unsigned long

unsigned long long

10/29

Arithmetic Types - Suffix (Literals)

Type SUFFIX Example Notes
int / 2
unsigned int u, U 3u
long int 1L 8L
long unsigned ul, UL 2ul
long long int 11, LL 411
long long unsigned int ull, ULL TULL
float f,F 3.0f only decimal numbers
double 3.0 only decimal numbers
C++423 Type SUFFIX Example Notes
std::bfloatl6_t bf16, BF16 3.0bf16 only decimal numbers
std::floatl6_t f16, F16 3.0f16 only decimal numbers
std::float32_t £32, F32 3.0£32 only decimal numbers
std::float64_t 64, F64 3.0f64 only decimal numbers
std::float128_t £128, F128 3.0£128 only decimal numbers

11/29

Arithmetic Types - Prefix (Literals)

Representation PREFIX Example
Binary C++14 Ob 0b010101
Octal 0 0307
Hexadecimal 0x or 0X 0xFFAO010

C++14 also allows digit separators for improving the readability 1'000'000

12/29

Other Arithmetic Types

= C++ also provides long double (no IEEE-754) of size 8/12/16 bytes
depending on the implementation

= Reduced precision floating-point supports before C++23:
- Some compilers provide support for half (16-bit floating-point) (GCC for ARM: __fp16 ,
LLVM compiler: half)

- Some modern CPUs and GPUs provide half instructions

- Software support: OpenGL, Photoshop, Lightroom, half.sourceforge.net

= C++ does not provide 128-bit integers even if some architectures support it.
clang and gcc allow 128-bit integers as compiler extension (__int128)

13/29

http://half.sourceforge.net/

void is an incomplete type (not defined) without a value

= void indicates also a function with no return type or no parameters
e.g. void £() , f(void)

= In C sizeof(void) == 1 (GCC), while in C++ sizeof(void) does not
compile!!

int main() {
// sizeof(void); // compile error
}

14/29

nullptr Keyword

C++11 introduces the keyword nullptr to represent a null pointer (0x0) and
replacing the NULL macro

nullptr is an object of type nullptr_t — safer

int* pl = NULL; // ok, equal to int* pl = 01
int* p2 = nullptr; // ok, nullptr is convertible to a pointer
int nl = NULL; // ok, we are assigning 0 to nl

//int n2 = nullptr; // compile error nullptr is not convertible to an integer

//int* p2 = true ? 0 : nullptr; // compile error incompatible types

15/29

Conversion Rules

Conversion Rules

Implicit type conversion rules, applied in order, before any operation:

®: any operation (*, +, /, -, %, etc.)

(A) Floating point promotion
floating type ® integer_type — floating type

(B) Implicit integer promotion
small_integral_type := any signed/unsigned integral type smaller than int
small_integral type ® small_integral type — int

(C) Size promotion
small _type ® large type — large_type

(D) Sign promotion
signed_type ® unsigned_type — unsigned_type 16/29

Examples and Common Errors

float f = 1.0f;
unsigned u = 2;
int i=3;
short s = 4;

uint8_t c = 5; // unsigned char

f *x u; // float X unsigned — float: 2.0f
s * c; // short X unsigned char — int: 20
u * i; // unsigned X int — unsigned: 6u

HS3 // unsigned char — int: 5

Integers are not floating points!
int b=17;
float a = b / 2; // a = 3 not 3.5!!

int =b 2.0;) =3 t 3.5!!
in c / // again c no I

Implicit Promotion

Integral data types smaller than 32-bit are implicitly promoted to int , independently
if they are signed or unsigned

= Unary +, -, ~ and Binary +, -, &, etc. promotion:

char a = 48; // 0!
cout << a; // print '0'
cout << +a; // print '48'

cout << (a + 0); // print '48'
uint8_t al = 255;

uint8_t bl = 255;
cout << (al + bl); // print '510' (no overflow)

18/29

auto Keyword

auto Keyword 1/3

C++11 The auto keyword specifies that the type of the variable will be automatically
deduced by the compiler (from its initializer)

auto a = 1 + 2; // 1 is int, 2 is int, 1 + 2 is int!

// =-> 'a' s "int"

auto b =1 + 2.0; // 1 4s int, 2.0 is double. 1 + 2.0 is double
// -=> 'b' is "double"

auto can be very useful for maintainability and for hiding complex type definitions

for (auto i = k; i < size; i++)

On the other hand, it may make the code less readable if excessively used because of
type hiding

Example: auto x = 0; in general makes no sense (x is int)
19/29

auto Keyword - Functions *

In C++11/C++14, auto (as well as decltype) can be used to define function
output types

auto g(int x) -> int { return x * 2; } // C++11
// "> int" 4s the deduction type
// a better way to express it is:

auto g2(int x) -> decltype(x * 2) { return x * 2; } // C++11

auto h(int x) { return x * 2; } // C++14

int x = g(3); // C++11

20/29

auto Keyword - Functions *

In C++420, auto can be also used to define function input

void f(auto x) {}

// equivalent to templates but less expensive at compile-time

£(3); // 'z’ is int
£(3.0); // 'z' is double

21/29

C++ Operators

Operators Overview

Precedence Operator Description Associativity
1 at+ a-- Suffix/postfix increment and decrement Left-to-right
5 +a -a ++a --a Plus-/mlnu-s, -Preflx increment/decrement, Right-to-left

! not ~ Logical/Bitwise Not
3 axb a/b alkb Multiplication, division, and remainder Left-to-right
4 atb a-b Addition and subtraction Left-to-right
5 < > Bitwise left shift and right shift Left-to-right
6 < <= > >= Relational operators Left-to-right
7 == I= Equality operators Left-to-right
8 & Bitwise AND Left-to-right
9 - Bitwise XOR Left-to-right
10 | Bitwise OR Left-to-right
11 && and Logical AND Left-to-right
12 || or Logical OR Left-to-right
= += -= %= [= Y=
13 . Assignment and Compound operators Right-to-left

K= >>= &= "= |= 22/29

Operators Precedence

Operators precedence @

= Unary operators have higher precedence than binary operators

= Standard math operators (+, *, etc.) have higher precedence than
comparison, bitwise, and logic operators

= Bitwise and logic operators have higher precedence than comparison operators
= Bitwise operators have higher precedence than logic operators

= Compound assignment operators +=, -=, x=, /= Y= "= I= &=

>>=, <<= have lower priority

= The comma operator has the lowest precedence (see next slides) 23/29

https://en.cppreference.com/w/cpp/language/operator_precedence

Operators Precedence

Examples:

a+b x 4; // a + (b * 4)
axb/clhd; // ((a *b) /c) [d
a+b< 3> 4; // (a +b) < (3 >>4)
a & b && c || 4; // (a && b && c) || d

a and b and c or d; // (a && b && c) || d

al|lb&clle&kd; // ((al] (b&c) [l (e&& d)

Important: sometimes parenthesis can make an expression verbose... but they can
help! 24/29

Prefix/Postfix Increment Semantic

Prefix Increment/Decrement ++i, --i

(1) Update the value
(2) Return the new (updated) value

Postfix Increment/Decrement i++, i--

(1) Save the old value (temporary)
(2) Update the value
(3) Return the old (original) value

Prefix/Postfix increment/decrement semantic applies not only to built-in types but

also to objects
25/29

Operation Ordering Undefined Behavior *

Expressions with undefined (implementation-defined) behavior:

int i = 0;

il S AL Gr 28 // until C++11: undefined behavior
// since C++11: 4 = 3

i=0;

i = i++ + 2; // until C++17: undefined behavior

// since C++17: i = 3

f(1=2,1i=1); // until C++17: undefined behavior
// since C++17: 4 = 2

= 0;

ali]l = ++i; // until C++17: undefined behavior
// since C++17: al[l1] = 1

f(++i, ++i); // undefined behavior

i = 441+ it+; // undefined behavior

26/29

Assignment, Compound, and Comma Operators

Assignment and compound assignment operators have right-to-left associativity
and their expressions return the assigned value

int y = 2;
int x =y = 3; // y=3, then z=3
// the same of © = (y = 3)

if (x = 4) // assign z=4 and evaluate to true

The comma operator* has left-to-right associativity. It evaluates the left expression,

discards its result, and returns the right expression

int a =5, b = 7;

int x = (3, 4); // discards 3, then z=/
int y = 0;
int z;

z =7y, X; // z=y (0), then returns = (4) 27/29

Spaceship Operator <=> *

C+-+20 provides the three-way comparison operator <=>, also called spaceship
operator, which allows comparing two objects similarly of strcmp . The operator
returns an object that can be directly compared with a positive, 0, or negative integer
value

(3 <=> 5) == 0; // false
('a' <=> 'a') == 0; // true

(3 <=> 5) < 0; // true
(7 <=> 5) < 0; // false

The semantic of the spaceship operator can be extended to any object (see next
lectures) and can greatly simplify the comparison operators overloading

28/29

Safe Comparison Operators *

C++-20 introduces a set of functions <utility> to safely compare integers of

different types (signed, unsigned)

bool cmp_equal(T1 a, T2 b)

bool cmp_not_equal(Tl a, T2 b)

bool cmp_less(T1 a, T2 b)

bool cmp_greater(T1 a, T2 b)

bool cmp_less_equal(T1 a, T2 b)

bool cmp_greater_equal(T1l a, T2 b)

example:

#include <utelity>

unsigned a = 4;

int b = -3;

bool vl = (a > b); // false!!!, see next slides
bool v2 = std::cmp_greater(a, b); // true

29/29

How to compare signed and unsigned integers in C++207

https://www.sandordargo.com/blog/2023/10/11/cpp20-intcmp-utilities

	The C++ Type System
	Type Categories
	Type Properties

	Fundamental Types Overview
	Arithmetic Types
	Suffix and Prefix
	Non-Standard Arithmetic Types
	void Type
	nullptr

	Conversion Rules
	auto Keyword
	C++ Operators
	Operators Precedence
	Prefix/Postfix Increment/Decrement Semantic
	Assignment, Compound, and Comma Operators
	Spaceship Operator <=>
	Safe Comparison Operators

